Home
Class 11
MATHS
Evaluate lim(x to 0)f(x), where : " ...

Evaluate `lim_(x to 0)f(x)`, where :
`" "f(x)={{:(x/abs(x)",", x ne 0), (0",", x=0):}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} f(x) \), where \[ f(x) = \begin{cases} \frac{x}{|x|} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] we will analyze the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches 0. ### Step 1: Calculate the Left-Hand Limit (LHL) The left-hand limit is defined as: \[ \lim_{x \to 0^-} f(x) \] For \( x < 0 \), we have \( |x| = -x \). Thus, \[ f(x) = \frac{x}{|x|} = \frac{x}{-x} = -1 \] Therefore, \[ \lim_{x \to 0^-} f(x) = -1 \] ### Step 2: Calculate the Right-Hand Limit (RHL) The right-hand limit is defined as: \[ \lim_{x \to 0^+} f(x) \] For \( x > 0 \), we have \( |x| = x \). Thus, \[ f(x) = \frac{x}{|x|} = \frac{x}{x} = 1 \] Therefore, \[ \lim_{x \to 0^+} f(x) = 1 \] ### Step 3: Compare LHL and RHL Now we compare the two limits: - LHL as \( x \to 0^- \) is \(-1\) - RHL as \( x \to 0^+ \) is \(1\) Since the left-hand limit and the right-hand limit are not equal: \[ \lim_{x \to 0^-} f(x) \neq \lim_{x \to 0^+} f(x) \] ### Conclusion The limit \( \lim_{x \to 0} f(x) \) does not exist because the left-hand limit and the right-hand limit are not equal. Thus, the final answer is: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find lim_(x to 0) f(x) , where f(x)={{:( x/abs "x " " ,", x ne 0), ( 0",", x =0) :}

Evaluate lim_(xrarr0) f(x) , where

Evaluate : lim_(x to 0)f(x)={{:(abs(x)/x",",x ne 0), (" 0,", x=0.):}

Evaluate (lim)_(x rarr0)f(x), where f(x)={(|x|)/(x),x!=00,x=0

Find lim_(x to 0)f(x) , where f(x)=abs(x)-5.

Evaluate (lim_(x rarr0)f(x), where f(x)=[(|x|)/(x),x!=0,0,x=0

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |

  9. Evaluate the following limits : lim(h to 0)1/h[1/(x+h)-1/x]

    Text Solution

    |

  10. lim(x-&gt;2)[1/(x-2)-(2(2x-3))/(x^3-3x^2+2x)]

    Text Solution

    |

  11. Find all possible values of 'a', if : lim(x to a)(x^(9)-a^(9))/(x-a)...

    Text Solution

    |

  12. If (lim)(x->a)(x^3-a^3)/(x-a)=(lim)(x->1)(x^4-1)/(x-1) , find all poss...

    Text Solution

    |

  13. underset(z rarr1)"lim"(2^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  14. Prove that : lim(x to 0)abs(x)/x does not exist

    Text Solution

    |

  15. Prove that : lim(x to 0)x/abs(x) does not exist

    Text Solution

    |

  16. Prove that : lim(x to 0^(+))x/abs(x)=1

    Text Solution

    |

  17. Prove that : lim(x to 0^(-))x/abs(x)=-1.

    Text Solution

    |

  18. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  19. Find lim(x to 0)f(x), where f(x)=abs(x)-5.

    Text Solution

    |

  20. Evaluate lim(x to 0)f(x), where : " "f(x)={{:(x/abs(x)",", x ne 0)...

    Text Solution

    |