Home
Class 11
MATHS
Evaluate the following : lim(x to 0)(1...

Evaluate the following :
`lim_(x to 0)(1-cos^(2)x)/(3 tan^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos^2 x}{3 \tan^2 x}, \] we can follow these steps: ### Step 1: Simplify the expression using trigonometric identities We know that \[ 1 - \cos^2 x = \sin^2 x. \] So, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin^2 x}{3 \tan^2 x}. \] ### Step 2: Rewrite \(\tan^2 x\) Recall that \[ \tan x = \frac{\sin x}{\cos x}, \] thus, \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x}. \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{\sin^2 x}{3 \cdot \frac{\sin^2 x}{\cos^2 x}} = \lim_{x \to 0} \frac{\sin^2 x \cdot \cos^2 x}{3 \sin^2 x}. \] ### Step 3: Cancel out \(\sin^2 x\) Assuming \(x \neq 0\), we can cancel \(\sin^2 x\) from the numerator and denominator: \[ \lim_{x \to 0} \frac{\cos^2 x}{3}. \] ### Step 4: Evaluate the limit As \(x\) approaches 0, \(\cos^2 x\) approaches \(\cos^2(0) = 1\). Therefore, we have: \[ \lim_{x \to 0} \frac{\cos^2 x}{3} = \frac{1}{3}. \] ### Final Answer Thus, the limit evaluates to: \[ \frac{1}{3}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(x to 0)(tan2x)/x

Evaluate the following Limits lim_(xto 0)(1-cos2x)/(x*tan3x)

Evaluate the following : lim_(x to pi)(1+cosx)/(tan^(2)x)

lim_(x rarr0)(1-cos2x)/(3tan^(2)x)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

Evaluate the following limit: (lim)_(x rarr pi)(1+cos x)/(tan^(2)x)

Evaluate the following limit: (lim)_(x rarr pi)(1+cos x)/(tan^(2)x)

Evaluate : lim_(x to 0)(1-cos2x)/(3x^(2))

Evaluate the following limits: lim_(xrarr0)((1-cos3x))/(x^(2))

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))