Home
Class 11
MATHS
Evaluate the following : lim(x to 0)(s...

Evaluate the following :
`lim_(x to 0)(sinx^(@))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin(x^\theta)}{x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin(x^\theta)}{x} \] ### Step 2: Use the substitution for small angles As \( x \to 0 \), \( x^\theta \) also approaches 0. We can use the fact that \( \lim_{y \to 0} \frac{\sin(y)}{y} = 1 \). To apply this, we rewrite the limit in terms of \( x^\theta \): \[ \lim_{x \to 0} \frac{\sin(x^\theta)}{x^\theta} \cdot \frac{x^\theta}{x} \] ### Step 3: Simplify the expression Now, we can simplify \( \frac{x^\theta}{x} \): \[ \frac{x^\theta}{x} = x^{\theta - 1} \] Thus, our limit becomes: \[ \lim_{x \to 0} \frac{\sin(x^\theta)}{x^\theta} \cdot x^{\theta - 1} \] ### Step 4: Apply the limit Now, we can evaluate the limit: \[ \lim_{x \to 0} \frac{\sin(x^\theta)}{x^\theta} = 1 \] So we have: \[ \lim_{x \to 0} \left( 1 \cdot x^{\theta - 1} \right) = \lim_{x \to 0} x^{\theta - 1} \] ### Step 5: Determine the final limit based on \( \theta \) - If \( \theta > 1 \), then \( \lim_{x \to 0} x^{\theta - 1} = 0 \). - If \( \theta = 1 \), then \( \lim_{x \to 0} x^{\theta - 1} = \lim_{x \to 0} x^0 = 1 \). - If \( \theta < 1 \), then \( \lim_{x \to 0} x^{\theta - 1} = \infty \). ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin(x^\theta)}{x} = \begin{cases} 0 & \text{if } \theta > 1 \\ 1 & \text{if } \theta = 1 \\ \infty & \text{if } \theta < 1 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(x to 0)(sinx^(2))/(x)

Evaluate the following : lim_(x to 0)x/(tanx)

Evaluate the following : lim_(x to 0)(x^(2))/(sinx^(2))

lim_(x to 0) (sin(sinx))/x

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

Evaluate the following limits : lim_(x to 0)((e^(x)-e^(-x))/sinx)