Home
Class 11
MATHS
Evaluate the following : lim(x to 0)(s...

Evaluate the following :
`lim_(x to 0)(sin5x)/(sin3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin(5x)}{\sin(3x)} \), we can use the standard limit property that states: \[ \lim_{x \to 0} \frac{\sin(ax)}{ax} = 1 \] for any constant \( a \). ### Step-by-Step Solution: 1. **Rewrite the limit**: We can express the limit in a form that allows us to apply the standard limit property. We can multiply and divide by \( 5x \) and \( 3x \): \[ \lim_{x \to 0} \frac{\sin(5x)}{\sin(3x)} = \lim_{x \to 0} \frac{\sin(5x)}{5x} \cdot \frac{5x}{3x} \cdot \frac{3x}{\sin(3x)} \] 2. **Separate the limit**: This can be separated into two limits: \[ = \lim_{x \to 0} \frac{\sin(5x)}{5x} \cdot \frac{5}{3} \cdot \lim_{x \to 0} \frac{3x}{\sin(3x)} \] 3. **Evaluate the first limit**: From the standard limit property, we know: \[ \lim_{x \to 0} \frac{\sin(5x)}{5x} = 1 \] 4. **Evaluate the second limit**: Similarly, we also have: \[ \lim_{x \to 0} \frac{3x}{\sin(3x)} = 1 \] 5. **Combine the results**: Now we can combine the results from the limits: \[ = 1 \cdot \frac{5}{3} \cdot 1 = \frac{5}{3} \] ### Final Answer: Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin(5x)}{\sin(3x)} = \frac{5}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(x to 0)(sin^(2)x)/(2x)

Evaluate the following limits: lim_(xrarr0)(sin5x)/(sin8x)

lim_(x rarr0)(sin4x)/(sin3x)

lim_(x rarr0)(sin5x)/(tan3x)

Evaluate the following limit: (lim)_(x rarr0)(sin5x-sin3x)/(sin x)

Evaluate the following limits: lim_(xrarr0)((sin5x-sin3x))/(sinx)

Evaluate the following limits: lim_(xrarr0)(sin2x+sin3x)/(2x+sin3x)

Evaluate the following limits : lim_(x to 0)(sin4x-tan4x)/x^(3)

Evaluate the following limits: lim_(xrarr0)((sinx-2sin3x+sin5x))/(x)

Evaluate the following: lim_(xrarr0)(sin^2 3x sin5x)/(tan^2 5x tan (x/2))