Home
Class 11
MATHS
Evaluate the following : lim(theta to ...

Evaluate the following :
`lim_(theta to 0)(sin4theta)/(tan3theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{\theta \to 0} \frac{\sin 4\theta}{\tan 3\theta} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( \theta \) approaches 0, both the numerator and denominator approach 0: \[ \sin 4\theta \to 0 \quad \text{and} \quad \tan 3\theta \to 0 \] This gives us a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) is of the form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] We will differentiate the numerator and the denominator with respect to \( \theta \). ### Step 3: Differentiate the numerator and denominator 1. Differentiate the numerator: \[ \frac{d}{d\theta}(\sin 4\theta) = 4\cos 4\theta \] 2. Differentiate the denominator: \[ \frac{d}{d\theta}(\tan 3\theta) = 3\sec^2 3\theta \] ### Step 4: Rewrite the limit using the derivatives Now we can rewrite our limit: \[ \lim_{\theta \to 0} \frac{\sin 4\theta}{\tan 3\theta} = \lim_{\theta \to 0} \frac{4\cos 4\theta}{3\sec^2 3\theta} \] ### Step 5: Substitute \( \theta = 0 \) Now we can substitute \( \theta = 0 \): \[ = \frac{4\cos(0)}{3\sec^2(0)} = \frac{4 \cdot 1}{3 \cdot 1} = \frac{4}{3} \] ### Final Answer Thus, the limit is: \[ \lim_{\theta \to 0} \frac{\sin 4\theta}{\tan 3\theta} = \frac{4}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(theta to 0)(1-costheta)/(2theta^(2))

Evaluate the following limits : lim_(theta to 0)(sin5theta-sin3theta)/(sintheta) .

Evaluate the following limit: (lim)_(theta rarr0)(s in4 theta)/(tan3 theta)

Evaluate the following limit: (lim)_(theta rarr0)(sin3 theta)/(tan2 theta)

Evaluate the following limits : lim_(theta to pi/2)(tan2theta)/(theta-pi/2)

Evaluate the following limits : lim_(theta to 0)((cosectheta-cottheta)/(theta))

Evaluate the following limit: (lim)_(theta rarr0)(1-cos4 theta)/(1-cos6 theta)

Statement 1 lim_(xtopi//2)(sin(cot^(2)x))/((pi-2x)^(2))=1/2 Statement 2: lim_(theta to 0)(sin theta)/(theta)=1 and lim_(theta to 0)(tan theta)/(theta)=1 , where theta is measured in radians.

Find theta if sin theta=tan theta .

lim_(theta rarr0)((sin theta)/(sin((theta)/(2))))=2