Home
Class 11
MATHS
Evaluate the following : lim(theta to ...

Evaluate the following :
`lim_(theta to 0)(sinatheta)/(sinbtheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{\theta \to 0} \frac{\sin(a\theta)}{\sin(b\theta)} \), we can use the standard limit property that states: \[ \lim_{x \to 0} \frac{\sin(kx)}{kx} = 1 \] for any constant \( k \). ### Step-by-Step Solution: 1. **Rewrite the Limit**: We start with the limit: \[ L = \lim_{\theta \to 0} \frac{\sin(a\theta)}{\sin(b\theta)} \] 2. **Multiply and Divide by \( a\theta \) and \( b\theta \)**: To utilize the known limit property, we can rewrite the limit as follows: \[ L = \lim_{\theta \to 0} \frac{\sin(a\theta)}{a\theta} \cdot \frac{a\theta}{b\theta} \cdot \frac{b\theta}{\sin(b\theta)} \] This gives us: \[ L = \lim_{\theta \to 0} \left( \frac{\sin(a\theta)}{a\theta} \cdot \frac{a}{b} \cdot \frac{b\theta}{\sin(b\theta)} \right) \] 3. **Apply the Limit**: Now we can apply the limit: - As \( \theta \to 0 \), \( \frac{\sin(a\theta)}{a\theta} \to 1 \) - As \( \theta \to 0 \), \( \frac{b\theta}{\sin(b\theta)} \to 1 \) Therefore, we have: \[ L = 1 \cdot \frac{a}{b} \cdot 1 = \frac{a}{b} \] 4. **Final Result**: Thus, the limit evaluates to: \[ \lim_{\theta \to 0} \frac{\sin(a\theta)}{\sin(b\theta)} = \frac{a}{b} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(theta to 0)(sin4theta)/(tan3theta)

Evaluate the following : lim_(theta to 0)(1-costheta)/(1-cos3theta)

Evaluate the following : lim_(theta to 0)(1-costheta)/(2theta^(2))

Evaluate the following limits : lim_(theta to 0)(sin5theta-sin3theta)/(sintheta) .

Evaluate the following : lim_(x to 0)xsecx

Evaluate the following : lim_(x to 0)(sinx^(@))/x

Evaluate the following : lim_(x to 0)x/(tanx)

Evaluate the following : lim_(x to 0)(tan2x)/x

Evaluate the following limits : lim_(theta to pi/2)(tan2theta)/(theta-pi/2)

Evaluate the following limit: (lim)_(theta rarr0)(sin3 theta)/(tan2 theta)