Home
Class 11
MATHS
Evaluate the following : lim(x to 0)(x...

Evaluate the following :
`lim_(x to 0)(xtan4x)/(1-cos4x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{x \tan(4x)}{1 - \cos(4x)} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the given limit: \[ \lim_{x \to 0} \frac{x \tan(4x)}{1 - \cos(4x)} \] ### Step 2: Substitute the definition of \(\tan\) Recall that \( \tan(4x) = \frac{\sin(4x)}{\cos(4x)} \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{x \cdot \frac{\sin(4x)}{\cos(4x)}}{1 - \cos(4x)} = \lim_{x \to 0} \frac{x \sin(4x)}{\cos(4x) (1 - \cos(4x))} \] ### Step 3: Use the identity for \(1 - \cos(4x)\) Using the identity \(1 - \cos(4x) = 2 \sin^2(2x)\), we can rewrite the limit: \[ \lim_{x \to 0} \frac{x \sin(4x)}{\cos(4x) \cdot 2 \sin^2(2x)} \] ### Step 4: Simplify the expression Now, we can simplify the limit: \[ \lim_{x \to 0} \frac{x \sin(4x)}{2 \sin^2(2x) \cos(4x)} \] ### Step 5: Apply the small angle approximation As \(x\) approaches \(0\), we can use the small angle approximation: - \(\sin(4x) \approx 4x\) - \(\sin(2x) \approx 2x\) Thus, we have: \[ \sin(4x) \approx 4x \quad \text{and} \quad \sin(2x) \approx 2x \] Substituting these approximations into the limit gives: \[ \lim_{x \to 0} \frac{x \cdot 4x}{2(2x)^2 \cdot \cos(4x)} = \lim_{x \to 0} \frac{4x^2}{8x^2 \cos(4x)} = \lim_{x \to 0} \frac{4}{8 \cos(4x)} \] ### Step 6: Evaluate the limit As \(x\) approaches \(0\), \(\cos(4x)\) approaches \(1\): \[ \lim_{x \to 0} \frac{4}{8 \cdot 1} = \frac{4}{8} = \frac{1}{2} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{x \tan(4x)}{1 - \cos(4x)} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(sin4x-tan4x)/x^(3)

Evaluate the following limit: (lim)_(x rarr0)(1-cos4x)/(x^(2))

Evaluate the following limit: (lim)_(x->pi/8)(cot4x-cos4x)/((pi-8x)^3)

Evaluate the following limit: (lim)_(x->0)(xtan2x-2xtanx)/((1-cos2x)^2)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((cos2x-cos8x))

Evaluate the following limit: (lim)_(x rarr0)(1-cos5x)/(1-cos6x)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((1-cos6x))

Evaluate the following limit: (lim)_(x->0)(1-"cos"(1-cos x))/(sin^4x)

Evaluate the following limits: lim_(xrarr0)(sin(x//4))/(x)

Evaluate the following limit: (lim)_(x rarr0)(cos2x-1)/(cos x-1)