Home
Class 11
MATHS
Evaluate the following (10-17) limits : ...

Evaluate the following (10-17) limits :
`lim_(x to 0)(sin2x+3x)/(4x-sin5x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \(\lim_{x \to 0} \frac{\sin 2x + 3x}{4x - \sin 5x}\), we will follow these steps: ### Step 1: Substitute \(x = 0\) First, we substitute \(x = 0\) into the limit: \[ \sin(2 \cdot 0) + 3 \cdot 0 = \sin(0) + 0 = 0 \] \[ 4 \cdot 0 - \sin(5 \cdot 0) = 0 - \sin(0) = 0 \] Since both the numerator and denominator evaluate to 0, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. We will differentiate the numerator and the denominator with respect to \(x\). #### Differentiate the Numerator: \[ \text{Numerator: } \sin(2x) + 3x \] Using the chain rule, the derivative is: \[ \frac{d}{dx}(\sin(2x)) = 2\cos(2x) \quad \text{and} \quad \frac{d}{dx}(3x) = 3 \] Thus, the derivative of the numerator is: \[ 2\cos(2x) + 3 \] #### Differentiate the Denominator: \[ \text{Denominator: } 4x - \sin(5x) \] The derivative is: \[ \frac{d}{dx}(4x) = 4 \quad \text{and} \quad \frac{d}{dx}(-\sin(5x)) = -5\cos(5x) \] Thus, the derivative of the denominator is: \[ 4 - 5\cos(5x) \] ### Step 3: Rewrite the Limit Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to 0} \frac{2\cos(2x) + 3}{4 - 5\cos(5x)} \] ### Step 4: Substitute \(x = 0\) Again Now we substitute \(x = 0\) into the new limit: \[ \text{Numerator: } 2\cos(2 \cdot 0) + 3 = 2\cos(0) + 3 = 2 \cdot 1 + 3 = 5 \] \[ \text{Denominator: } 4 - 5\cos(5 \cdot 0) = 4 - 5\cos(0) = 4 - 5 \cdot 1 = 4 - 5 = -1 \] ### Step 5: Final Calculation Now we can compute the limit: \[ \lim_{x \to 0} \frac{5}{-1} = -5 \] Thus, the final answer is: \[ \boxed{-5} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following (10-17) limits : lim_(x to 0)(sin3x-sinx)/(sinx)

Evaluate the following (10-17) limits : lim_(x to 0)(tan3x+x)/(2x+sin4x)

Evaluate the following (10-17) limits : lim_(x to pi//2)(cos^(2)x)/(1-sin^(2)x) .

lim_(x rarr0)(sin2x+tan3x)/(4x-sin5x)

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

Evaluate the following limits : lim_(x to 0)(sin4x-tan4x)/x^(3)

Evaluate the following limits: (i) lim_(x rarr0)(sin2x+3x)/(2x+sin3x)

Evaluate the following limits: lim_(xrarr0)((sin2x+3x))/((2x+sin3x))

Evaluate the following limits: lim_(xrarr0)(sin2x+sin3x)/(2x+sin3x)

Evaluate the following limit: (lim)_(x rarr0)(sin x cos x)/(3x)

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (b)
  1. Evaluate the following limits : lim(x to pi/2)(cotx-cosx)/(cos^(3)x...

    Text Solution

    |

  2. Evaluate lim(x-> 0) (tan3x-2x)/(3x- sin^2 x)

    Text Solution

    |

  3. Evaluate the following (10-17) limits : lim(x to 0)(sin2x+3x)/(4x-si...

    Text Solution

    |

  4. lim(x->0)(sin2x+3x)/(2x+tan3x)

    Text Solution

    |

  5. lim(x-gt0)(tan2x-sin2x)/(x^3)

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sin4x-tan4x)/x^(3)

    Text Solution

    |

  7. Evaluate the following (10-17) limits : lim(x to pi//2)(cos^(2)x)/(1...

    Text Solution

    |

  8. Evaluate the following (10-17) limits : lim(y to 0)((x+y)sec(x+y)-xs...

    Text Solution

    |

  9. Evaluate the following limits: lim(xto(pi)/(4))((cosec^(2)x-2))/((co...

    Text Solution

    |

  10. Evaluate the following (10-17) limits : lim(x to 0)(tan3x+x)/(2x+sin...

    Text Solution

    |

  11. Evaluate the following limits : lim(theta to 0)((cosectheta-cottheta...

    Text Solution

    |

  12. Evaluate the following (10-17) limits : 11. lim(x to 1) (1+cospix)/(1...

    Text Solution

    |

  13. lim(x->pi/2)(1+cos2x)/((pi-2x)^2)

    Text Solution

    |

  14. Evaluate the following limits : lim(theta to pi/2)(tan2theta)/(theta...

    Text Solution

    |

  15. lim(x->pi)((sin3x-3sinx)/((pi-x)^3))

    Text Solution

    |

  16. Evaluate the following (10-17) limits : lim(x to pi/2)(cotx)/(pi/2-x...

    Text Solution

    |

  17. Evaluate lim(xto(pi)/(2))(cosx)/(((pi)/(2)-x)).

    Text Solution

    |

  18. Select the correct alternatives out of given four alternatives in each...

    Text Solution

    |

  19. lim(x rarr pi/4)(tan^3x-tanx)/(cos(x+pi/4)

    Text Solution

    |

  20. Evaluate the following lim(t to 1)(1-1/t)/(sin[pi(t-1)])

    Text Solution

    |