Home
Class 11
MATHS
Evaluate the following limits : lim(th...

Evaluate the following limits :
`lim_(theta to pi/2)(tan2theta)/(theta-pi/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{\theta \to \frac{\pi}{2}} \frac{\tan(2\theta)}{\theta - \frac{\pi}{2}}, \] we will follow these steps: ### Step 1: Rewrite the limit We notice that as \(\theta\) approaches \(\frac{\pi}{2}\), the denominator approaches \(0\). We can rewrite the limit in a more manageable form. We can express \(\theta\) in terms of a new variable \(h\) where \(h = \theta - \frac{\pi}{2}\). Therefore, as \(\theta\) approaches \(\frac{\pi}{2}\), \(h\) approaches \(0\). ### Step 2: Substitute for \(\theta\) Now, we can express \(\theta\) as: \[ \theta = h + \frac{\pi}{2}. \] Substituting this into our limit gives: \[ \lim_{h \to 0} \frac{\tan(2(h + \frac{\pi}{2}))}{h}. \] ### Step 3: Simplify the argument of the tangent Using the angle addition formula for tangent, we have: \[ \tan(2(h + \frac{\pi}{2})) = \tan(2h + \pi) = \tan(2h). \] This is because \(\tan(x + \pi) = \tan(x)\). ### Step 4: Substitute back into the limit Now our limit becomes: \[ \lim_{h \to 0} \frac{\tan(2h)}{h}. \] ### Step 5: Apply the limit property We can use the limit property that states: \[ \lim_{x \to 0} \frac{\tan(kx)}{kx} = 1. \] In our case, we can set \(k = 2\): \[ \lim_{h \to 0} \frac{\tan(2h)}{2h} \cdot 2 = 1 \cdot 2 = 2. \] ### Final Result Thus, we conclude that: \[ \lim_{\theta \to \frac{\pi}{2}} \frac{\tan(2\theta)}{\theta - \frac{\pi}{2}} = 2. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(theta rarr0)(sin3 theta)/(tan2 theta)

lim_(theta rarr pi/2)(sec theta-tan theta)/(pi-2 theta)

Tha value of the limit lim_(theta to 0) (tan(pi cos^(2)theta))/(sin (2pi sin^(2)theta)) is equal to :

lim_(theta rarr(pi)/(2))(sec theta-tan theta)/(pi-2 theta)

Prove that lim_(theta rarr(pi)/(2))(2cos theta)/(pi-2 theta)=1

Solve that following equations: tan theta+tan(theta+(pi)/(3))+tan(theta+(2 pi)/(3))=3

Statement 1 lim_(xtopi//2)(sin(cot^(2)x))/((pi-2x)^(2))=1/2 Statement 2: lim_(theta to 0)(sin theta)/(theta)=1 and lim_(theta to 0)(tan theta)/(theta)=1 , where theta is measured in radians.

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (b)
  1. Evaluate the following (10-17) limits : lim(x to 0)(sin2x+3x)/(4x-si...

    Text Solution

    |

  2. lim(x->0)(sin2x+3x)/(2x+tan3x)

    Text Solution

    |

  3. lim(x-gt0)(tan2x-sin2x)/(x^3)

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sin4x-tan4x)/x^(3)

    Text Solution

    |

  5. Evaluate the following (10-17) limits : lim(x to pi//2)(cos^(2)x)/(1...

    Text Solution

    |

  6. Evaluate the following (10-17) limits : lim(y to 0)((x+y)sec(x+y)-xs...

    Text Solution

    |

  7. Evaluate the following limits: lim(xto(pi)/(4))((cosec^(2)x-2))/((co...

    Text Solution

    |

  8. Evaluate the following (10-17) limits : lim(x to 0)(tan3x+x)/(2x+sin...

    Text Solution

    |

  9. Evaluate the following limits : lim(theta to 0)((cosectheta-cottheta...

    Text Solution

    |

  10. Evaluate the following (10-17) limits : 11. lim(x to 1) (1+cospix)/(1...

    Text Solution

    |

  11. lim(x->pi/2)(1+cos2x)/((pi-2x)^2)

    Text Solution

    |

  12. Evaluate the following limits : lim(theta to pi/2)(tan2theta)/(theta...

    Text Solution

    |

  13. lim(x->pi)((sin3x-3sinx)/((pi-x)^3))

    Text Solution

    |

  14. Evaluate the following (10-17) limits : lim(x to pi/2)(cotx)/(pi/2-x...

    Text Solution

    |

  15. Evaluate lim(xto(pi)/(2))(cosx)/(((pi)/(2)-x)).

    Text Solution

    |

  16. Select the correct alternatives out of given four alternatives in each...

    Text Solution

    |

  17. lim(x rarr pi/4)(tan^3x-tanx)/(cos(x+pi/4)

    Text Solution

    |

  18. Evaluate the following lim(t to 1)(1-1/t)/(sin[pi(t-1)])

    Text Solution

    |

  19. Evaluate the following limits: lim(x->pi/2)(pi/2-x)tanx

    Text Solution

    |

  20. Let f(x)={{:(cosx, if ,x ge 0), (x+k, if ,x lt 0.):} Find the value ...

    Text Solution

    |