Home
Class 11
MATHS
Let f(x)={{:(cosx, if ,x ge 0), (x+k, if...

Let `f(x)={{:(cosx, if ,x ge 0), (x+k, if ,x lt 0.):}`
Find the value of the constant k, given that `lim_(x to 0)f(x)` exists.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the constant \( k \) such that the limit \( \lim_{x \to 0} f(x) \) exists. The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} \cos x & \text{if } x \geq 0 \\ x + k & \text{if } x < 0 \end{cases} \] ### Step 1: Determine the limits from both sides as \( x \) approaches 0. We need to calculate the left-hand limit \( \lim_{x \to 0^-} f(x) \) and the right-hand limit \( \lim_{x \to 0^+} f(x) \). **Right-hand limit:** \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \cos x = \cos(0) = 1 \] **Left-hand limit:** \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x + k) = 0 + k = k \] ### Step 2: Set the left-hand limit equal to the right-hand limit. For the limit \( \lim_{x \to 0} f(x) \) to exist, the left-hand limit must equal the right-hand limit: \[ k = 1 \] ### Conclusion Thus, the value of the constant \( k \) is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(x", for " x ge 0),(x^(2)", for " x lt 0):} , then f is

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x) = {{:(( 2+x)",",if , x ge0), (( 2-x)",", if , x lt 0):} show that f(x) not derivable at x =0

If f(x) = {(x,",", x ge 0),(x^(2),",",x lt 0):} , then f(x) is

Let f(x)={:{(x^(2),x ge 0),(ax, x lt 0):} . Find real values of a such that f(x) is strictly monotonically increasing at x = 0 .

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

If f(x) = {(x^2+k,,,x ge 0),(-x^2-k,,,x lt 0):} is continuous at x = 0, then k is equal to

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (b)
  1. Evaluate the following (10-17) limits : lim(x to 0)(sin2x+3x)/(4x-si...

    Text Solution

    |

  2. lim(x->0)(sin2x+3x)/(2x+tan3x)

    Text Solution

    |

  3. lim(x-gt0)(tan2x-sin2x)/(x^3)

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sin4x-tan4x)/x^(3)

    Text Solution

    |

  5. Evaluate the following (10-17) limits : lim(x to pi//2)(cos^(2)x)/(1...

    Text Solution

    |

  6. Evaluate the following (10-17) limits : lim(y to 0)((x+y)sec(x+y)-xs...

    Text Solution

    |

  7. Evaluate the following limits: lim(xto(pi)/(4))((cosec^(2)x-2))/((co...

    Text Solution

    |

  8. Evaluate the following (10-17) limits : lim(x to 0)(tan3x+x)/(2x+sin...

    Text Solution

    |

  9. Evaluate the following limits : lim(theta to 0)((cosectheta-cottheta...

    Text Solution

    |

  10. Evaluate the following (10-17) limits : 11. lim(x to 1) (1+cospix)/(1...

    Text Solution

    |

  11. lim(x->pi/2)(1+cos2x)/((pi-2x)^2)

    Text Solution

    |

  12. Evaluate the following limits : lim(theta to pi/2)(tan2theta)/(theta...

    Text Solution

    |

  13. lim(x->pi)((sin3x-3sinx)/((pi-x)^3))

    Text Solution

    |

  14. Evaluate the following (10-17) limits : lim(x to pi/2)(cotx)/(pi/2-x...

    Text Solution

    |

  15. Evaluate lim(xto(pi)/(2))(cosx)/(((pi)/(2)-x)).

    Text Solution

    |

  16. Select the correct alternatives out of given four alternatives in each...

    Text Solution

    |

  17. lim(x rarr pi/4)(tan^3x-tanx)/(cos(x+pi/4)

    Text Solution

    |

  18. Evaluate the following lim(t to 1)(1-1/t)/(sin[pi(t-1)])

    Text Solution

    |

  19. Evaluate the following limits: lim(x->pi/2)(pi/2-x)tanx

    Text Solution

    |

  20. Let f(x)={{:(cosx, if ,x ge 0), (x+k, if ,x lt 0.):} Find the value ...

    Text Solution

    |