Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}, \] we will follow these steps: ### Step 1: Substitute \(x = 0\) First, we substitute \(x = 0\) into the limit: \[ \frac{e^0 - e^{\sin 0}}{0 - \sin 0} = \frac{1 - 1}{0 - 0} = \frac{0}{0}. \] This is an indeterminate form, so we need to manipulate the expression further. **Hint:** When you encounter the form \(0/0\), consider using algebraic manipulation or L'Hôpital's rule. ### Step 2: Rewrite the expression We can rewrite the expression by factoring out \(e^{\sin x}\) from the numerator: \[ e^x - e^{\sin x} = e^{\sin x}(e^{x - \sin x} - 1). \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{e^{\sin x}(e^{x - \sin x} - 1)}{x - \sin x}. \] **Hint:** Factoring out common terms can simplify the limit evaluation. ### Step 3: Analyze \(x - \sin x\) Next, we need to analyze \(x - \sin x\). We know that as \(x \to 0\), \(x - \sin x\) can be approximated using the Taylor series expansion of \(\sin x\): \[ \sin x \approx x - \frac{x^3}{6} + O(x^5). \] Thus, \[ x - \sin x \approx \frac{x^3}{6}. \] **Hint:** Using Taylor series can help in simplifying expressions near a point. ### Step 4: Substitute back into the limit Now, substituting back, we have: \[ \lim_{x \to 0} \frac{e^{\sin x}(e^{x - \sin x} - 1)}{\frac{x^3}{6}} = \lim_{x \to 0} \frac{6e^{\sin x}(e^{x - \sin x} - 1)}{x^3}. \] **Hint:** When rewriting the limit, ensure that you maintain the correct form of the expression. ### Step 5: Evaluate \(e^{x - \sin x}\) Next, we need to evaluate \(e^{x - \sin x}\). As \(x \to 0\), \(x - \sin x \to 0\), and we can use the fact that: \[ e^u - 1 \approx u \text{ for small } u. \] Thus, \[ e^{x - \sin x} - 1 \approx (x - \sin x). \] **Hint:** Recognizing limits of exponential functions can simplify calculations. ### Step 6: Substitute and simplify Substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{6e^{\sin x}(x - \sin x)}{x^3}. \] Now, we can replace \(x - \sin x\) with \(\frac{x^3}{6}\): \[ \lim_{x \to 0} \frac{6e^{\sin x} \cdot \frac{x^3}{6}}{x^3} = \lim_{x \to 0} e^{\sin x}. \] **Hint:** Simplifying the limit to a single term can often lead to an easier evaluation. ### Step 7: Evaluate the final limit Finally, as \(x \to 0\), \(\sin x \to 0\), so: \[ e^{\sin x} \to e^0 = 1. \] Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x} = 1. \] ### Final Answer The final result is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/x

Evaluate the following limits : lim_(x to 0)((e^(x)-e^(-x))/sinx)

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/sinx .

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to -infty)e^(x)

Evaluate the following limits : lim_(x to infty)e^(-x)

Evaluate the following limits : lim_(x to 2)(e^(x)-e^(2))/(x-2)

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 0)(e^(x)-sinx-1)/x

    Text Solution

    |

  2. Evaluate the following limits: lim(xto0)((e^(3+x)-sinx-e^(3)))/(x)

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(e^(x)-e^(sinx))/(x-sinx)

    Text Solution

    |

  4. Evaluate the following limit: (lim)(x->5)(e^x-e^5)/(x-)

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(e^(x)-e^(2))/(x-2)

    Text Solution

    |

  6. Evaluate the limits, if exist (lim)(x->3)(e^x-e^3)/(x-3)

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((a^(x)-b^(x))/(x))

    Text Solution

    |

  8. Evaluate the following limits: lim(xto0)((a^(x)-a^(-x))/(x))

    Text Solution

    |

  9. Evaluate the following limits : lim(x to 0)(e^(x)-e^(-x))

    Text Solution

    |

  10. Evaluate the following limits : lim(x to 0)(e^(x)-e^(-x))/x

    Text Solution

    |

  11. Evaluate the following limits : lim(x to 1)(e^(-x)-e^(-1))/(x-1)

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 1)(e^(x)-e^(-x))/(e^(x)+e^(...

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)(e^(x)-e^(-x))/sinx.

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(e^(bx)-e^(ax))/x, where ...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 1)(logx)/(x-1)

    Text Solution

    |

  16. Evaluate the following limits : lim(x to 1)(x-1)/(logx).

    Text Solution

    |

  17. lim(x rarr 0)ln(1+3x)/(3^x-1)

    Text Solution

    |

  18. Evaluate the following limits : lim(x to 0)(log(1+x))/(e^(x)-1).

    Text Solution

    |

  19. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  20. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |