Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{3-x} - 3^{x/2}}, \] we will follow these steps: ### Step 1: Substitute \( x = 2 \) First, we substitute \( x = 2 \) into the limit expression to check if it results in an indeterminate form. **Calculation:** - Numerator: \[ 3^2 + 3^{3-2} - 12 = 9 + 3 - 12 = 0. \] - Denominator: \[ 3^{3-2} - 3^{2/2} = 3 - 3 = 0. \] Since both the numerator and denominator evaluate to 0, we have a \( \frac{0}{0} \) indeterminate form. **Hint:** Always check the limit by substituting the value first to see if it results in an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \] provided the limit on the right exists. **Hint:** Remember that L'Hôpital's Rule can only be applied to \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) forms. ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and denominator with respect to \( x \). **Numerator:** \[ f(x) = 3^x + 3^{3-x} - 12. \] Using the chain rule: \[ f'(x) = 3^x \ln(3) - 3^{3-x} \ln(3). \] **Denominator:** \[ g(x) = 3^{3-x} - 3^{x/2}. \] Using the chain rule: \[ g'(x) = -3^{3-x} \ln(3) + \frac{1}{2} 3^{x/2} \ln(3). \] **Hint:** When differentiating exponential functions, remember to apply the chain rule and include the logarithm of the base. ### Step 4: Substitute \( x = 2 \) Again Now we substitute \( x = 2 \) into the derivatives: **Numerator:** \[ f'(2) = 3^2 \ln(3) - 3^{3-2} \ln(3) = 9 \ln(3) - 3 \ln(3) = 6 \ln(3). \] **Denominator:** \[ g'(2) = -3^{3-2} \ln(3) + \frac{1}{2} 3^{2/2} \ln(3) = -3 \ln(3) + \frac{1}{2} \cdot 3 \ln(3) = -3 \ln(3) + \frac{3}{2} \ln(3) = -\frac{3}{2} \ln(3). \] ### Step 5: Calculate the Limit Now we can compute the limit: \[ \lim_{x \to 2} \frac{f'(x)}{g'(x)} = \frac{6 \ln(3)}{-\frac{3}{2} \ln(3)} = \frac{6}{-\frac{3}{2}} = 6 \cdot -\frac{2}{3} = -4. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{-4}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr2)((3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)))

Evaluate the following limits lim_(x to 4)(4x+3)/(x-2)

Evaluate the following limits : lim_(x to 2)(x^(3)-2x^(2))/(x^(2)-5x+6)

Evaluate the following limit: (lim)_(x rarr2)(3-x)

Evaluate the following limits : lim_(x to 0)(log(3+x)-log(3-x))/x .

Evaluate the following limits : lim_(x to 1)[(x-2)/(x^(2)-x)-1/(x^(3)-3x^(2)+2x)]

Evaluate the following limits : lim_(x to 3)(logx-log3)/(x-3)

Evaluate the following limit: (lim)_(x rarr2)(x^(3)+3^(2)-9x-2)/(x^(3)-x-6)

Evaluate the following limits : lim_(x rarr 1/3) (9x^2-1)/(3x-1)

Evaluate the following limits : lim_(x rarr 2) (x^2-x-2)/ (x^2-3x+2)

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |

  3. Evaluate the following limits : lim(x to infty)(sin(a/2^(x)))/sin(b/2^...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)[1/x-(log(1+x))/x^(2)]

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/x

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/sinx

    Text Solution

    |

  9. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  10. Evaluate the following limits : lim(x to pi/2)(e^(sinx)-1)/sinx

    Text Solution

    |

  11. Evaluate the following limits : lim(x to pi/2)(e^(cosx)-1)/cosx

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(e^(sin2x)-e^(sinx))/x

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((e^(x)-e^(-x))/sinx)

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(x(e^(2+x)-e^(2)))/(1-cos...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(x(2^(x)-1))/(1-cosx).

    Text Solution

    |

  16. Evaluate the following limits : lim(x to pi/2)(2^(-cosx)-1)/(x(x-pi...

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/(log(1+x)).

    Text Solution

    |

  18. Evaluateunderset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1).

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(5^x-1)/(sqrt(4+x)-2)

    Text Solution

    |

  20. lim(x rarr 0)tan(pi/4+x)^(1/x)=

    Text Solution

    |