Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(e^(sinx)-1)/sinx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x}, \] we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the limit expression: \[ \frac{e^{\sin(0)} - 1}{\sin(0)} = \frac{e^0 - 1}{0} = \frac{1 - 1}{0} = \frac{0}{0}. \] This gives us an indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter \( \frac{0}{0} \), it indicates that further analysis is needed, such as applying L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator: \[ \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} = \lim_{x \to 0} \frac{\frac{d}{dx}(e^{\sin x})}{\frac{d}{dx}(\sin x)}. \] ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and the denominator: - The derivative of the numerator \( e^{\sin x} \) using the chain rule is: \[ \frac{d}{dx}(e^{\sin x}) = e^{\sin x} \cdot \cos x. \] - The derivative of the denominator \( \sin x \) is: \[ \frac{d}{dx}(\sin x) = \cos x. \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{e^{\sin x} \cdot \cos x}{\cos x}. \] ### Step 5: Simplify the Expression We can simplify the expression since \( \cos x \) in the numerator and denominator cancels out (as long as \( \cos x \neq 0 \), which is true near \( x = 0 \)): \[ \lim_{x \to 0} e^{\sin x}. \] ### Step 6: Substitute \( x = 0 \) Again Now we substitute \( x = 0 \): \[ e^{\sin(0)} = e^0 = 1. \] ### Conclusion Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} = 1. \] **Final Answer:** \( 1 \) ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to pi/2)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to 0)e^(x)

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))

Evaluate the following limits : lim_(x to 0)((e^(x)-e^(-x))/sinx)

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/sinx .

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)

Evaluate the following limit: (lim)_(x->0)(e^(sinx)-1)/x

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |

  3. Evaluate the following limits : lim(x to infty)(sin(a/2^(x)))/sin(b/2^...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)[1/x-(log(1+x))/x^(2)]

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/x

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/sinx

    Text Solution

    |

  9. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  10. Evaluate the following limits : lim(x to pi/2)(e^(sinx)-1)/sinx

    Text Solution

    |

  11. Evaluate the following limits : lim(x to pi/2)(e^(cosx)-1)/cosx

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(e^(sin2x)-e^(sinx))/x

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((e^(x)-e^(-x))/sinx)

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(x(e^(2+x)-e^(2)))/(1-cos...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(x(2^(x)-1))/(1-cosx).

    Text Solution

    |

  16. Evaluate the following limits : lim(x to pi/2)(2^(-cosx)-1)/(x(x-pi...

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/(log(1+x)).

    Text Solution

    |

  18. Evaluateunderset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1).

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(5^x-1)/(sqrt(4+x)-2)

    Text Solution

    |

  20. lim(x rarr 0)tan(pi/4+x)^(1/x)=

    Text Solution

    |