Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(e^(sin2x)-e^(sinx))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^{\sin 2x} - e^{\sin x}}{x}, \] we first check the form of the limit as \(x\) approaches 0. 1. **Substituting \(x = 0\)**: \[ e^{\sin 2(0)} - e^{\sin(0)} = e^{0} - e^{0} = 1 - 1 = 0. \] The denominator is also \(0\) since \(x = 0\). Thus, we have a \( \frac{0}{0} \) indeterminate form. 2. **Applying L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \(\lim_{x \to a} \frac{f(x)}{g(x)}\) results in \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \] provided the limit on the right exists. Here, let: - \(f(x) = e^{\sin 2x} - e^{\sin x}\) - \(g(x) = x\) We need to find the derivatives \(f'(x)\) and \(g'(x)\). 3. **Finding \(f'(x)\)**: Using the chain rule: \[ f'(x) = \frac{d}{dx}(e^{\sin 2x}) - \frac{d}{dx}(e^{\sin x}) = e^{\sin 2x} \cdot \cos(2x) \cdot 2 - e^{\sin x} \cdot \cos(x). \] Thus, \[ f'(x) = 2 e^{\sin 2x} \cos(2x) - e^{\sin x} \cos(x). \] 4. **Finding \(g'(x)\)**: \[ g'(x) = 1. \] 5. **Applying L'Hôpital's Rule**: Now we can substitute back into the limit: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \left(2 e^{\sin 2x} \cos(2x) - e^{\sin x} \cos(x)\right). \] 6. **Substituting \(x = 0\) again**: \[ = 2 e^{\sin(0)} \cos(0) - e^{\sin(0)} \cos(0) = 2 \cdot 1 \cdot 1 - 1 \cdot 1 = 2 - 1 = 1. \] Thus, the final value of the limit is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)e^(x)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)((e^(x)-e^(-x))/sinx)

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/sinx .

Evaluate the following limits : lim_(x to pi/2)(e^(sinx)-1)/sinx

Evaluate the following limit: (lim)_(x->0)(e^(sin2x)-e^(sin\ x))/x

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |

  3. Evaluate the following limits : lim(x to infty)(sin(a/2^(x)))/sin(b/2^...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)[1/x-(log(1+x))/x^(2)]

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/x

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/sinx

    Text Solution

    |

  9. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  10. Evaluate the following limits : lim(x to pi/2)(e^(sinx)-1)/sinx

    Text Solution

    |

  11. Evaluate the following limits : lim(x to pi/2)(e^(cosx)-1)/cosx

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(e^(sin2x)-e^(sinx))/x

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((e^(x)-e^(-x))/sinx)

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(x(e^(2+x)-e^(2)))/(1-cos...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(x(2^(x)-1))/(1-cosx).

    Text Solution

    |

  16. Evaluate the following limits : lim(x to pi/2)(2^(-cosx)-1)/(x(x-pi...

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/(log(1+x)).

    Text Solution

    |

  18. Evaluateunderset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1).

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(5^x-1)/(sqrt(4+x)-2)

    Text Solution

    |

  20. lim(x rarr 0)tan(pi/4+x)^(1/x)=

    Text Solution

    |