Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)((e^(x)-e^(-x))/sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}, \] we first observe that substituting \( x = 0 \) directly into the expression gives us: \[ \frac{e^0 - e^{-0}}{\sin 0} = \frac{1 - 1}{0} = \frac{0}{0}, \] which is an indeterminate form. Therefore, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form of type \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivative of the numerator and the denominator. ### Step 1: Differentiate the numerator and denominator 1. **Numerator:** The derivative of \( e^x - e^{-x} \) is: \[ \frac{d}{dx}(e^x - e^{-x}) = e^x + e^{-x}. \] 2. **Denominator:** The derivative of \( \sin x \) is: \[ \frac{d}{dx}(\sin x) = \cos x. \] ### Step 2: Rewrite the limit using L'Hôpital's Rule Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x}. \] ### Step 3: Substitute \( x = 0 \) again Substituting \( x = 0 \) into the new expression gives us: \[ \frac{e^0 + e^{-0}}{\cos 0} = \frac{1 + 1}{1} = \frac{2}{1} = 2. \] ### Conclusion Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = 2. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))/x

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(sinx))/(x-sinx)

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

Evaluate the following limits : lim_(x to -infty)e^(x)

Evaluate the following limits : lim_(x to infty)e^(-x)

Evaluate the following limits : lim_(x to 2)(e^(x)-e^(2))/(x-2)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate the following limits : lim_(x to 1)(e^(x)-e^(-x))/(e^(x)+e^(-x))

Evaluate the following limits : lim_(x to 1)(e^(-x)-e^(-1))/(x-1)

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |

  3. Evaluate the following limits : lim(x to infty)(sin(a/2^(x)))/sin(b/2^...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)[1/x-(log(1+x))/x^(2)]

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/x

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/sinx

    Text Solution

    |

  9. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  10. Evaluate the following limits : lim(x to pi/2)(e^(sinx)-1)/sinx

    Text Solution

    |

  11. Evaluate the following limits : lim(x to pi/2)(e^(cosx)-1)/cosx

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(e^(sin2x)-e^(sinx))/x

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((e^(x)-e^(-x))/sinx)

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(x(e^(2+x)-e^(2)))/(1-cos...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(x(2^(x)-1))/(1-cosx).

    Text Solution

    |

  16. Evaluate the following limits : lim(x to pi/2)(2^(-cosx)-1)/(x(x-pi...

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/(log(1+x)).

    Text Solution

    |

  18. Evaluateunderset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1).

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(5^x-1)/(sqrt(4+x)-2)

    Text Solution

    |

  20. lim(x rarr 0)tan(pi/4+x)^(1/x)=

    Text Solution

    |