Home
Class 11
MATHS
Evaluate the following limits : lim(x...

Evaluate the following limits :
`lim_(x to pi/2)(2^(-cosx)-1)/(x(x-pi/2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{2^{-\cos x} - 1}{x(x - \frac{\pi}{2})} \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{2} \) First, we substitute \( x = \frac{\pi}{2} \) into the expression to check if it results in an indeterminate form. \[ \cos\left(\frac{\pi}{2}\right) = 0 \implies 2^{-\cos\left(\frac{\pi}{2}\right)} = 2^0 = 1 \] Thus, the numerator becomes: \[ 2^{-\cos\left(\frac{\pi}{2}\right)} - 1 = 1 - 1 = 0 \] The denominator also becomes: \[ \frac{\pi}{2}\left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \frac{\pi}{2} \cdot 0 = 0 \] Since both the numerator and denominator approach 0, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. Let \( f(x) = 2^{-\cos x} - 1 \) and \( g(x) = x(x - \frac{\pi}{2}) \). ### Step 3: Differentiate the Numerator and Denominator **Numerator:** To differentiate \( f(x) = 2^{-\cos x} - 1 \), we use the chain rule: \[ f'(x) = \frac{d}{dx}(2^{-\cos x}) = 2^{-\cos x} \cdot \ln(2) \cdot \sin x \] **Denominator:** For the denominator \( g(x) = x(x - \frac{\pi}{2}) \): \[ g'(x) = \frac{d}{dx}(x^2 - \frac{\pi}{2}x) = 2x - \frac{\pi}{2} \] ### Step 4: Rewrite the Limit Using Derivatives Now we rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{2}} \frac{2^{-\cos x} \cdot \ln(2) \cdot \sin x}{2x - \frac{\pi}{2}} \] ### Step 5: Substitute \( x = \frac{\pi}{2} \) Again Now we substitute \( x = \frac{\pi}{2} \): **Numerator:** \[ f'\left(\frac{\pi}{2}\right) = 2^{-\cos\left(\frac{\pi}{2}\right)} \cdot \ln(2) \cdot \sin\left(\frac{\pi}{2}\right) = 2^0 \cdot \ln(2) \cdot 1 = \ln(2) \] **Denominator:** \[ g'\left(\frac{\pi}{2}\right) = 2\left(\frac{\pi}{2}\right) - \frac{\pi}{2} = \pi - \frac{\pi}{2} = \frac{\pi}{2} \] ### Step 6: Calculate the Limit Now we can compute the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \frac{\ln(2)}{\frac{\pi}{2}} = \frac{2\ln(2)}{\pi} \] Thus, the final answer is: \[ \boxed{\frac{2\ln(2)}{\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (d)|28 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to pi/2)(e^(cosx)-1)/cosx

Evaluate the following limits : lim_(x to pi/2)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to pi/2)(cotx-cosx)/(cos^(3)x)

Evaluate the following limits : lim_(x to 0)(x(2^(x)-1))/(1-cosx) .

Evaluate the following limit: (lim)_(x rarr pi/2)(e^(cos x)-1)/(cos x)

Evaluate the following (10-17) limits : lim_(x to pi/2)(cotx)/(pi/2-x)

Evaluate the following limits: lim_(xrarr pi)(sqrt(2+cosx)-1)/((pi-x)^(2))

Evaluate the following limit: (lim)_(x->pi/4)(sqrt(2)cosx-1)/(cotx-1)

Evaluate the following (10-17) limits : lim_(x to pi//2)(cos^(2)x)/(1-sin^(2)x) .

Evaluate the following limits: lim_(xrarr (pi)/(4))(tanx-1)/((x-(pi)/(4)))

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (c)
  1. Evaluate the following limits : lim(x to 3)(logx-log3)/(x-3)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 0)(log(3+x)-log(3-x))/x.

    Text Solution

    |

  3. Evaluate the following limits : lim(x to infty)(sin(a/2^(x)))/sin(b/2^...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)[1/x-(log(1+x))/x^(2)]

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/x

    Text Solution

    |

  7. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(e^(sinx)-1)/sinx

    Text Solution

    |

  9. Evaluate the following limits: lim(xto0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  10. Evaluate the following limits : lim(x to pi/2)(e^(sinx)-1)/sinx

    Text Solution

    |

  11. Evaluate the following limits : lim(x to pi/2)(e^(cosx)-1)/cosx

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(e^(sin2x)-e^(sinx))/x

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((e^(x)-e^(-x))/sinx)

    Text Solution

    |

  14. Evaluate the following limits : lim(x to 0)(x(e^(2+x)-e^(2)))/(1-cos...

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(x(2^(x)-1))/(1-cosx).

    Text Solution

    |

  16. Evaluate the following limits : lim(x to pi/2)(2^(-cosx)-1)/(x(x-pi...

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/(log(1+x)).

    Text Solution

    |

  18. Evaluateunderset(xto0)lim(2^(x)-1)/(sqrt(1+x)-1).

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(5^x-1)/(sqrt(4+x)-2)

    Text Solution

    |

  20. lim(x rarr 0)tan(pi/4+x)^(1/x)=

    Text Solution

    |