Home
Class 11
MATHS
Let f(x)=3x^(3)+7x^(5). Find f^(')(2)....

Let `f(x)=3x^(3)+7x^(5)`. Find `f^(')(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = 3x^3 + 7x^5 \) and evaluate it at \( x = 2 \), we will follow these steps: ### Step 1: Differentiate the function To find \( f'(x) \), we will use the power rule of differentiation. The power rule states that if \( f(x) = ax^n \), then \( f'(x) = n \cdot ax^{n-1} \). Applying this to each term in \( f(x) \): 1. For the first term \( 3x^3 \): \[ \frac{d}{dx}(3x^3) = 3 \cdot 3x^{3-1} = 9x^2 \] 2. For the second term \( 7x^5 \): \[ \frac{d}{dx}(7x^5) = 5 \cdot 7x^{5-1} = 35x^4 \] Combining these results, we get: \[ f'(x) = 9x^2 + 35x^4 \] ### Step 2: Evaluate the derivative at \( x = 2 \) Now we need to find \( f'(2) \): \[ f'(2) = 9(2^2) + 35(2^4) \] Calculating each term: 1. Calculate \( 2^2 \): \[ 2^2 = 4 \quad \Rightarrow \quad 9(2^2) = 9 \cdot 4 = 36 \] 2. Calculate \( 2^4 \): \[ 2^4 = 16 \quad \Rightarrow \quad 35(2^4) = 35 \cdot 16 = 560 \] Now, combine these results: \[ f'(2) = 36 + 560 = 596 \] ### Final Answer Thus, the value of \( f'(2) \) is \( 596 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (g)|23 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .

Let f (x) =x ^(3)-3x Find f (f (x))

f(x)=3x^(4)-.5x^(2)+7, find f(x-1)

If f(x)=x^(3)+7x^(2)+8x-9, find f 4)

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f(1).

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

Let f(x) = x^(5) +2x -3 " find " (f^(-1))'(-3)

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

Let f : R to R : f (x) =(3-x^(3))^(1//3). Find f o f

Let f:A rarr B be an invertible function.If f(x)=2x^(3)+3x^(2)+x-1, then f^(-1)(5)=