Home
Class 11
MATHS
Let f(x)=x^(3)/3-x^(2)/2+x-16. Find f^('...

Let `f(x)=x^(3)/3-x^(2)/2+x-16`. Find `f^(')(0), f^(')(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivatives \( f'(0) \) and \( f'(-1) \) for the function \( f(x) = \frac{x^3}{3} - \frac{x^2}{2} + x - 16 \), we will follow these steps: ### Step 1: Differentiate the function \( f(x) \) The function is given as: \[ f(x) = \frac{x^3}{3} - \frac{x^2}{2} + x - 16 \] We will differentiate \( f(x) \) with respect to \( x \). The derivative of \( x^n \) is given by \( nx^{n-1} \). 1. Differentiate \( \frac{x^3}{3} \): \[ \frac{d}{dx}\left(\frac{x^3}{3}\right) = \frac{3x^2}{3} = x^2 \] 2. Differentiate \( -\frac{x^2}{2} \): \[ \frac{d}{dx}\left(-\frac{x^2}{2}\right) = -\frac{2x}{2} = -x \] 3. Differentiate \( x \): \[ \frac{d}{dx}(x) = 1 \] 4. Differentiate \( -16 \): \[ \frac{d}{dx}(-16) = 0 \] Now combine these results: \[ f'(x) = x^2 - x + 1 \] ### Step 2: Evaluate \( f'(0) \) Now we will substitute \( x = 0 \) into \( f'(x) \): \[ f'(0) = 0^2 - 0 + 1 = 1 \] ### Step 3: Evaluate \( f'(-1) \) Next, we will substitute \( x = -1 \) into \( f'(x) \): \[ f'(-1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3 \] ### Final Results Thus, we have: \[ f'(0) = 1 \] \[ f'(-1) = 3 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (g)|23 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+3x^(2)-2x+4, find f(-2)+f(2)-f(0)

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

Let f(x) = x^(.^(3)//_(2)) . Then, f'(0) = ?

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x)

Let f(x)=int(1)/((1+x^(2))^(3//2))dx and f(0)=0 then f(1)=

Let f(x) = x^(5) +2x -3 " find " (f^(-1))'(-3)

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x).

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .