Home
Class 11
MATHS
Let H(y)=2y^(4)-6y^(3)+2y-4. Find H^(')(...

Let `H(y)=2y^(4)-6y^(3)+2y-4`. Find `H^(')(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( H'(2) \) for the function \( H(y) = 2y^4 - 6y^3 + 2y - 4 \), we will first need to differentiate the function \( H(y) \) with respect to \( y \) and then evaluate the derivative at \( y = 2 \). ### Step 1: Differentiate \( H(y) \) Using the power rule, which states that if \( h(y) = y^n \), then \( h'(y) = n \cdot y^{n-1} \), we can differentiate each term of \( H(y) \): 1. Differentiate \( 2y^4 \): \[ \frac{d}{dy}(2y^4) = 2 \cdot 4y^{4-1} = 8y^3 \] 2. Differentiate \( -6y^3 \): \[ \frac{d}{dy}(-6y^3) = -6 \cdot 3y^{3-1} = -18y^2 \] 3. Differentiate \( 2y \): \[ \frac{d}{dy}(2y) = 2 \] 4. Differentiate \( -4 \): \[ \frac{d}{dy}(-4) = 0 \] Now, combining these results, we have: \[ H'(y) = 8y^3 - 18y^2 + 2 \] ### Step 2: Evaluate \( H'(2) \) Now we will substitute \( y = 2 \) into \( H'(y) \): \[ H'(2) = 8(2^3) - 18(2^2) + 2 \] Calculating each term: 1. \( 2^3 = 8 \) so \( 8(2^3) = 8 \times 8 = 64 \) 2. \( 2^2 = 4 \) so \( -18(2^2) = -18 \times 4 = -72 \) 3. The constant term is \( +2 \) Now, substituting these values into the equation: \[ H'(2) = 64 - 72 + 2 \] \[ H'(2) = 64 - 72 = -8 \] \[ H'(2) = -8 + 2 = -6 \] ### Final Answer Thus, \( H'(2) = -6 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (g)|23 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (h)|24 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (e)|17 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If p(y)=y^(6)-3y^(4)+2y^(2)+6 and q(y)=y^(5)-y^(3)+2y^(2)+y-6 , find p(y)+q(y) and p(y)-q(y) .

2y ^ (4) + y ^ (3) -14y ^ (2) -19y-6

Find the limiting points of the system of the co-axial circles determined by the x^(2)+y^(2)-4x-6y=3=0 and x^(2)+y^(2)-24x-26y+277=0

Divide (y ^ (4) -3y ^ (3) + 2y + 6) by (y + 1)

Divide: 3y^(4)-3y^(3)-4y^(2)-4y^(2)-4y-byy^(2)-2y2y^(5)+10y^(4)+6y^(3)+y^(2)+5y+3by2y^(3)+1x^(4)-2x^(3)+2x^(2)+x+4byx^(2)+x+1

Find the number of common tangents that can be drawn to the circles x^(2)+y^(2)-4x-6y-3=0 and x^(2)+y^(2)+2x+2y+1=0

Find the equations of the transverse common tangents of x^(2)+y^(2)-4x-10y+28=0 and x^(2)+y^(2)+4x-6y+4=0

Show that the following set of curves intersect orthogonally: y=x^(3) and 6y=7-x^(2)x^(3)-3xy^(2)=-2 and 3x^(2)y-y=2x^(2)+4y^(2)=8 and x^(2)-2y^(2)=4