Home
Class 11
MATHS
Prove that d/(dx)(secx)=secxtanx....

Prove that `d/(dx)(secx)=secxtanx.`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(secx) is :

Prove that d/(dx)(cosectheta)=-cosecthetacottheta.

Prove that (d)/(dx)("cosec"^(-1)x)=(-1)/(|x|sqrt(x^(2)-1)) , where x in R-[-1,1] .

(d)/(dx)((secx+tanx)/(secx-tanx))=

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)(sin^(-1)x)/(a)}=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)(x)/(a)}=sqrt(a^(2)-x^(2))

Prove that (d)/(dx)(cot^(-1)x)=(-1)/((1+x^(2))) , where x in R .

Using mathematical induction prove that : (d)/(dx)(x^(n))=nx^(n-1)f or backslash all n in N