Home
Class 11
MATHS
Prove that d/(dx)(cosectheta)=-cosecthet...

Prove that `d/(dx)(cosectheta)=-cosecthetacottheta.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{d}{d\theta}(\csc \theta) = -\csc \theta \cot \theta\), we will use the quotient rule of differentiation. ### Step-by-Step Solution: 1. **Rewrite the cosecant function**: \[ \csc \theta = \frac{1}{\sin \theta} \] 2. **Apply the quotient rule**: The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let \(u = 1\) and \(v = \sin \theta\). Therefore: \[ \frac{d}{d\theta}(\csc \theta) = \frac{\sin \theta \cdot \frac{d}{d\theta}(1) - 1 \cdot \frac{d}{d\theta}(\sin \theta)}{\sin^2 \theta} \] 3. **Differentiate the components**: - The derivative of a constant (1) is 0: \[ \frac{d}{d\theta}(1) = 0 \] - The derivative of \(\sin \theta\) is \(\cos \theta\): \[ \frac{d}{d\theta}(\sin \theta) = \cos \theta \] 4. **Substitute the derivatives back into the quotient rule**: \[ \frac{d}{d\theta}(\csc \theta) = \frac{\sin \theta \cdot 0 - 1 \cdot \cos \theta}{\sin^2 \theta} \] This simplifies to: \[ \frac{d}{d\theta}(\csc \theta) = \frac{-\cos \theta}{\sin^2 \theta} \] 5. **Rewrite using cosecant and cotangent**: We know that: \[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Therefore: \[ \frac{-\cos \theta}{\sin^2 \theta} = -\frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta} = -\cot \theta \cdot \csc \theta \] 6. **Final result**: Thus, we have: \[ \frac{d}{d\theta}(\csc \theta) = -\csc \theta \cot \theta \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.1|32 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (B) FILL IN THE BLANKS|15 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Prove that d/(dx)(secx)=secxtanx.

int(cosec theta-cot theta)/(cosectheta+ cot theta)d theta=

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

d/(dx)(secx) is :

d/(dx)(cotx) is :

The value of (2(sin2theta+2cos^2theta-1))/(costheta-sintheta-cos3theta+sin3theta) is adot costheta b. sectheta c. cosectheta d. sintheta

(d)/(dx)|x|

Prove that (d)/(dx)("cosec"^(-1)x)=(-1)/(|x|sqrt(x^(2)-1)) , where x in R-[-1,1] .

If sectheta -cosectheta =0 , then the value of tantheta + cottheta is (A) 0 (B) 1 (C ) -1 (D) 2

Prove that (d)/(dx)(cot^(-1)x)=(-1)/((1+x^(2))) , where x in R .