Home
Class 11
MATHS
Evaluate the following limits lim(x to 0...

Evaluate the following limits `lim_(x to 0)(sinax)/(sinbx), a,b ne 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)} \) where \( a, b \neq 0 \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)} \] ### Step 2: Use the standard limit We know from the standard limit that: \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \] We can manipulate our limit to use this result. We can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin(ax)}{ax} \cdot \frac{ax}{bx} \cdot \frac{bx}{\sin(bx)} \] ### Step 3: Split the limit This gives us: \[ \lim_{x \to 0} \left( \frac{\sin(ax)}{ax} \cdot \frac{a}{b} \cdot \frac{bx}{\sin(bx)} \right) \] Now we can separate the limits: \[ \lim_{x \to 0} \frac{\sin(ax)}{ax} \cdot \frac{a}{b} \cdot \lim_{x \to 0} \frac{bx}{\sin(bx)} \] ### Step 4: Evaluate each limit Using the standard limit: \[ \lim_{x \to 0} \frac{\sin(ax)}{ax} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{bx}{\sin(bx)} = 1 \] Thus, we have: \[ 1 \cdot \frac{a}{b} \cdot 1 = \frac{a}{b} \] ### Final Result Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin(ax)}{\sin(bx)} = \frac{a}{b} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT FILE - EXERCISE 13.2|27 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 13|33 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS - (D) VERY SHORT ANSWER TYPE QUESTIONS|25 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)e^(x)

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

lim_(xrarr0) (sinax)/(sinbx),a,bne0

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))

Evaluate the following limits: lim_(xrarr0)(sin(x//4))/(x)

Evaluate the following limit lim_(x rarr0)(sin(x^(*)))/(x)

Evaluate the following limits : lim_(x to 0)(sin4x-tan4x)/x^(3)

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate the following limits : lim_(x to 0)(e^(sin2x)-e^(sinx))/x

MODERN PUBLICATION-LIMITS AND DERIVATIVES-NCERT FILE - EXERCISE 13.1
  1. Evaluate the following limits in lim(x to -2)(1/x+1/2)/(x+2).

    Text Solution

    |

  2. underset(xrarr0)"lim"(sinax)/(bx)

    Text Solution

    |

  3. Evaluate the following limits lim(x to 0)(sinax)/(sinbx), a,b ne 0.

    Text Solution

    |

  4. (lim)(x->pi)(sin(pi-x))/(pi(pi-x))

    Text Solution

    |

  5. underset(xrarr0)"lim"(cos x)/(pi-x)

    Text Solution

    |

  6. underset(xrarr0)"lim"(cos 2x-1)/(cos x-1)

    Text Solution

    |

  7. Evaluate the following limits in Exercise 1 to 22. lim(a to 0)(ax+xc...

    Text Solution

    |

  8. Evaluate the following limits in Exercise 1 to 22. lim(x to 0)xsecx.

    Text Solution

    |

  9. underset(xrarr0)"lim"(sinax+bx)/(ax+si nbx),a,b,a+bne0

    Text Solution

    |

  10. underset(xrarr0)"lim"(cosecx-cotx)

    Text Solution

    |

  11. underset(xrarr(pi)/(2))"lim"(tan2x)/(x-(pi)/(2))

    Text Solution

    |

  12. Find lim(x to 0)f(x) and lim(x to 1)f(x), where f(x)={{:(2x+3",", x ...

    Text Solution

    |

  13. Find underset(xrarr1)"lim"f(x), where f(x)={{:(x^(2)-1,xle1),(-x^(2)...

    Text Solution

    |

  14. Evaluate ("lim")(x->0)f(x),\ w h e r e\ f(x)={(|x|)/x ,\ x!=0 0,\ x=0

    Text Solution

    |

  15. Find lim(x to 0) f(x), where f(x)={{:( x/abs "x " " ,", x ne 0), ...

    Text Solution

    |

  16. Find (lim)(x->5)f(x), where f(x)=|x|-5

    Text Solution

    |

  17. Suppose f(x)={(a+bx, x<1), (4, x=1), (b-ax, x>1):} and if lim(xto1) f(...

    Text Solution

    |

  18. Let a(1),a(2),...,a(n) be fixed real numbers and let f(x)=(x-a(1))(...

    Text Solution

    |

  19. Let f(x){:{(|x|+1",",xlt0),(0",",x=0),(|x|-1",",xgt0):} For what val...

    Text Solution

    |

  20. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |