Home
Class 11
MATHS
Evaluate underset(xto20)"lim"(x^(2)-4)/...

Evaluate `underset(xto20)"lim"(x^(2)-4)/((sqrt(3x)-2)-(sqrt(x)+2))`

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise REVISION EXERCISE|20 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise COMPETITION FILE|8 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise QUESTIONS FROM NCERT EXEMPLAR|8 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 20) (x^(2)-4)/((sqrt(3x)-2)-(sqrt(x)+2))

lim_(x rarr2)(x^(2)-4)/(sqrt(x+2)-sqrt(3x-2))

lim_(xrarr2) (x^(2)-4)/(sqrt(x+2)-sqrt(3x-2))

lim_(x rarr2)(x-2)/(sqrt(x+2)-sqrt(3x-2))

Evaluate underset( x rarr oo )("lim") ( sqrt( 3x^(2) - 1) - sqrt( 2x ^(2) - 1))/( 4x + 3)

If value of underset(x to a)lim (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrtx)" is equal to "(2sqrt3)/(m) , where m is equal to

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

Evaluate the following: lim_(xrarr2)(x^2-4)/(sqrt(3x-2)-sqrt(6-x))

If f(9)=9" and "f'(9)=4," then "underset(xto9)("lim")(sqrt(f(x))-3)/(sqrt(x)-3)=

The value of underset(x to 0)lim (sqrt(1+x^(2))-sqrt(1-x^(2)))/(x^(2)) is