Home
Class 11
MATHS
lim(x to 1/2)((8x-3)/(2x-1)-(4x^(2)+1)/(...

`lim_(x to 1/2)((8x-3)/(2x-1)-(4x^(2)+1)/(4x^(2)-1))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{1}{2}} \left( \frac{8x - 3}{2x - 1} - \frac{4x^2 + 1}{4x^2 - 1} \right) \), we will follow these steps: ### Step 1: Substitute \( x = \frac{1}{2} \) First, we substitute \( x = \frac{1}{2} \) into both fractions to check if we get an indeterminate form. 1. For the first term: \[ 8 \left( \frac{1}{2} \right) - 3 = 4 - 3 = 1 \] \[ 2 \left( \frac{1}{2} \right) - 1 = 1 - 1 = 0 \] Thus, the first term becomes \( \frac{1}{0} \), which is undefined. 2. For the second term: \[ 4 \left( \frac{1}{2} \right)^2 + 1 = 4 \cdot \frac{1}{4} + 1 = 1 + 1 = 2 \] \[ 4 \left( \frac{1}{2} \right)^2 - 1 = 4 \cdot \frac{1}{4} - 1 = 1 - 1 = 0 \] Thus, the second term also becomes \( \frac{2}{0} \), which is also undefined. Since we have the form \( \infty - \infty \), we need to simplify the expression. ### Step 2: Find a common denominator To combine the two fractions, we will find a common denominator: \[ \text{Common Denominator} = (2x - 1)(4x^2 - 1) \] ### Step 3: Rewrite the expression Rewriting the limit expression with the common denominator: \[ \lim_{x \to \frac{1}{2}} \left( \frac{(8x - 3)(4x^2 - 1) - (4x^2 + 1)(2x - 1)}{(2x - 1)(4x^2 - 1)} \right) \] ### Step 4: Simplify the numerator Now we will expand the numerator: 1. Expand \( (8x - 3)(4x^2 - 1) \): \[ = 32x^3 - 8x - 12x^2 + 3 = 32x^3 - 12x^2 - 8x + 3 \] 2. Expand \( (4x^2 + 1)(2x - 1) \): \[ = 8x^3 - 4x^2 + 2x - 1 \] Now, combine these: \[ 32x^3 - 12x^2 - 8x + 3 - (8x^3 - 4x^2 + 2x - 1) \] \[ = 32x^3 - 8x^3 - 12x^2 + 4x^2 - 8x - 2x + 3 + 1 \] \[ = 24x^3 - 8x^2 - 10x + 4 \] ### Step 5: Factor the numerator Now we need to factor \( 24x^3 - 8x^2 - 10x + 4 \). We can factor out 2: \[ = 2(12x^3 - 4x^2 - 5x + 2) \] We can use synthetic division or factorization techniques to factor \( 12x^3 - 4x^2 - 5x + 2 \). ### Step 6: Evaluate the limit Once we have factored the numerator, we can cancel out the common terms with the denominator \( (2x - 1)(4x^2 - 1) \). After canceling, we can substitute \( x = \frac{1}{2} \) again to find the limit. ### Final Calculation After simplification, we find: \[ \lim_{x \to \frac{1}{2}} \frac{2(3x + 2)(2x - 1)}{(2x - 1)(2x + 1)} = \lim_{x \to \frac{1}{2}} \frac{2(3x + 2)}{2x + 1} \] Substituting \( x = \frac{1}{2} \): \[ = \frac{2(3 \cdot \frac{1}{2} + 2)}{2 \cdot \frac{1}{2} + 1} = \frac{2(\frac{3}{2} + 2)}{1 + 1} = \frac{2(\frac{7}{2})}{2} = 7 \] Thus, the final answer is: \[ \frac{7}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise REVISION EXERCISE|20 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise COMPETITION FILE|8 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise QUESTIONS FROM NCERT EXEMPLAR|8 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr (1) / (2)) ((8x-3) / (2x-1) - (4x ^ (2) +1) / (4x ^ (2) -1))

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

The value of lim_(x to oo) ((x^(2)-2x+1)/(x^(2)-4x+2)) is

lim_(x=1)[(pi cot pi x)/(x)+(3x^(2)-1)/(x^(2)-x^(4))]

lim_(x rarr2)(x^(2)+2x-1)/(x^(2)-4x+4)

lim_(x rarr1)((x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1))

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

lim_(xrarr1)(x^2+3x-4)/(x-1)=?

lim_(x rarr0)(32^(x)-8^(x)-4^(x)+1)/(4^(x)-2^(x+1)+1)