Home
Class 11
MATHS
If alpha, beta are the zeroes of ax^(2)+...

If `alpha, beta` are the zeroes of `ax^(2)+bx+c`, then evaluate :
`lim_(x to beta)(1-cos(ax^(2)+bx+c))/(x-beta)^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \beta} \frac{1 - \cos(ax^2 + bx + c)}{(x - \beta)^2} \] where \(\alpha\) and \(\beta\) are the roots of the quadratic polynomial \(ax^2 + bx + c\), we can follow these steps: ### Step 1: Substitute the expression for \(ax^2 + bx + c\) Since \(\alpha\) and \(\beta\) are the roots of the polynomial, we can express \(ax^2 + bx + c\) in terms of its roots: \[ ax^2 + bx + c = a(x - \alpha)(x - \beta) \] ### Step 2: Rewrite the limit Now, we can rewrite the limit using this expression: \[ \lim_{x \to \beta} \frac{1 - \cos(a(x - \alpha)(x - \beta))}{(x - \beta)^2} \] ### Step 3: Use the trigonometric identity We know that \(1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right)\). Thus, we can rewrite the limit as: \[ \lim_{x \to \beta} \frac{2\sin^2\left(\frac{a(x - \alpha)(x - \beta)}{2}\right)}{(x - \beta)^2} \] ### Step 4: Change of variable Let \(h = x - \beta\). As \(x \to \beta\), \(h \to 0\). Therefore, we can rewrite the limit in terms of \(h\): \[ \lim_{h \to 0} \frac{2\sin^2\left(\frac{a((h + \beta) - \alpha)h}{2}\right)}{h^2} \] ### Step 5: Simplify the expression inside the sine function Now, we can simplify the expression inside the sine function: \[ = \lim_{h \to 0} \frac{2\sin^2\left(\frac{a(h + \beta - \alpha)h}{2}\right)}{h^2} \] ### Step 6: Use the small angle approximation As \(h \to 0\), we can use the approximation \(\sin(x) \approx x\) for small \(x\): \[ \sin\left(\frac{a(h + \beta - \alpha)h}{2}\right) \approx \frac{a(h + \beta - \alpha)h}{2} \] ### Step 7: Substitute back into the limit Substituting this approximation back into the limit gives: \[ \lim_{h \to 0} \frac{2\left(\frac{a(h + \beta - \alpha)h}{2}\right)^2}{h^2} \] ### Step 8: Simplify the limit This simplifies to: \[ \lim_{h \to 0} \frac{a^2(h + \beta - \alpha)^2h^2}{2h^2} = \lim_{h \to 0} \frac{a^2(h + \beta - \alpha)^2}{2} \] ### Step 9: Evaluate the limit As \(h \to 0\), \(h + \beta - \alpha \to \beta - \alpha\): \[ = \frac{a^2(\beta - \alpha)^2}{2} \] Thus, the final answer is: \[ \lim_{x \to \beta} \frac{1 - \cos(ax^2 + bx + c)}{(x - \beta)^2} = \frac{a^2(\beta - \alpha)^2}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise COMPETITION FILE|8 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise CHAPTER TEST 13|12 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim_(xto alpha)(1+ax^(2)+bx+c)^(2//x-alpha) is

If alpha and beta are the roots of x^2+bx+c=0 Find lim_(x to beta)(e^(2(x^2+bx+c))-1-2(x^2+bx+c))/(x-beta)^2

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

If alpha,beta are the roots of ax^(2)+bx+c=0 then those of ax^(2)+2bx+4c=0 are

MODERN PUBLICATION-LIMITS AND DERIVATIVES-REVISION EXERCISE
  1. lim(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

    Text Solution

    |

  2. Evaluate the following limits lim(x to 1)(1/(x-1)-(3(x-2))/(x^(3)-3x^(...

    Text Solution

    |

  3. Evaluate the following limit: (lim)(x->1)(1/(x^2+x-2)-x/(x^3-1))

    Text Solution

    |

  4. lim(x->3) {x^3-7x^2+15x-9}/{x^4-5x^3+27x-27} is equal to:

    Text Solution

    |

  5. Evaluate: lim(xto0)((1+x)^(6)-1)/((1+x)^(2)-1)

    Text Solution

    |

  6. Evaluate : ("lim")(xvecoo)(a x^2+b x+c)/(dx^2+e x+f)dot

    Text Solution

    |

  7. The value of lim(xto oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3), is

    Text Solution

    |

  8. Evaluate the following limits : lim(x to infty)(sqrt(x^(2)+x+1)-sqrt(...

    Text Solution

    |

  9. Given f(x)=(ax+b)/(x+1), lim(x to oo)f(x)=1 and lim(x to 0)f(x)=2, th...

    Text Solution

    |

  10. If lim(x to 0)kxcosecx=lim(x to 0)xcoseckx, show that k=pm1.

    Text Solution

    |

  11. lim(x->0)(2sinx^0-sin2x^0)/(x^3)

    Text Solution

    |

  12. If alpha, beta are the zeroes of ax^(2)+bx+c, then evaluate : lim(x ...

    Text Solution

    |

  13. Find the derivative of the following functions (it is to be understand...

    Text Solution

    |

  14. Find the derivative of (x^n-a^n)/(x-a)for some constant a.

    Text Solution

    |

  15. Differentiate each of the following from first principle: tansqrt(x)

    Text Solution

    |

  16. Find the derivative : x^(2)cosx

    Text Solution

    |

  17. Find the derivative of s in x3 from first principles.

    Text Solution

    |

  18. If f(x)=x^(2)-3x+4, find the value of x for which the derivative is ze...

    Text Solution

    |

  19. If f(x)=x^(2)-4x+3, find the value of x for which the derivative is 2.

    Text Solution

    |

  20. If f(x)=x^(3)tanx+3x^(4)sinx, find its derivative at x = 0 and x = pi/...

    Text Solution

    |