Home
Class 11
MATHS
Find (dy)/(dx)" when "y=(x+cosx)/(tanx)....

Find `(dy)/(dx)" when "y=(x+cosx)/(tanx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(y = \frac{x + \cos x}{\tan x}\), we will use the quotient rule for differentiation. The quotient rule states that if \(y = \frac{u}{v}\), then \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = x + \cos x\) and \(v = \tan x\). ### Step 1: Identify \(u\) and \(v\) Let: - \(u = x + \cos x\) - \(v = \tan x\) ### Step 2: Differentiate \(u\) and \(v\) Now we need to find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\). 1. Differentiate \(u\): \[ \frac{du}{dx} = \frac{d}{dx}(x + \cos x) = 1 - \sin x \] 2. Differentiate \(v\): \[ \frac{dv}{dx} = \frac{d}{dx}(\tan x) = \sec^2 x \] ### Step 3: Apply the quotient rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{\tan x (1 - \sin x) - (x + \cos x) \sec^2 x}{\tan^2 x} \] ### Step 4: Simplify the expression Now, we will simplify the expression: 1. Expand the numerator: \[ \tan x (1 - \sin x) = \tan x - \tan x \sin x \] Thus, the numerator becomes: \[ \tan x - \tan x \sin x - (x + \cos x) \sec^2 x \] 2. Combine terms: The final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\tan x - \tan x \sin x - (x + \cos x) \sec^2 x}{\tan^2 x} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\tan x - \tan x \sin x - (x + \cos x) \sec^2 x}{\tan^2 x} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise COMPETITION FILE|8 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx)" when "y=(x^(5)-cosx)/(sinx) .

Find (dy)/(dx) when : y=(x+tanx)/(tanx)

Find (dy)/(dx) when : y=(cosx)/(1+sinx)

Find (dy)/(dx) , when: y=x^(sinx)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when y=sqrt(x)

Find (dy)/(dx) , when: y=(cosx)^(cosx)

Find (dy)/(dx) , when: y=(cosx)^(logx)

Find (dy)/(dx) , when: y=(sinx)^(cosx)

Find (dy)/(dx) , when: y=x^(sqrtx)