Home
Class 11
MATHS
lim(x->-1)[1+x+x^2+...+x^(10)]...

`lim_(x->-1)[1+x+x^2+...+x^(10)]`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise CHAPTER TEST 13|12 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits, if they exist : lim_(x to -1)[1+x+x^(2)+……+x^(10)] .

lim_(x rarr1)[x^(3)-x^(2)+1]lim_(x rarr1)[x^(3)-x^(2)+1] (iii) quad lim_(x rarr3)[x(x+1)]lim_(x rarr1)[1+x+x^(2)+....+x^(10)]

lim_ (x rarr-1) [1 + x + x ^ (2) + ... + x ^ (10)]

lim_(x->0) (x^2-3x+1)/(x-1)

lim_(x rarr1)[(x^(2)+1)/(x+100)]

lim_ (x rarr oo) ((x + 2) ^ (10) + (x + 4) ^ (10) ++ (x + 20) ^ (10)) / (x ^ (10) +1) =

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

lim_ (x rarr1) (x-3) / (x ^ (2) + 2x-4) = (lim_ (x rarr1) (x-3)) / (lim_ (x rarr1) (x ^ (2) + 2x -4))

Evalute lim_(xrarr1) (x^(15)-1)/(x^(10)-1)

lim_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]