Home
Class 12
MATHS
Let alpha in (0, pi//2) be fixed. If the...

Let `alpha in (0, pi//2)` be fixed. If the integral `int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x)``"sin" 2 alpha +C`,where C is a constant of integration, then the functions `A(x)` and `B(x)` are respectively.

A

`x+alpha "and log"_(e)|"sin"(x+alpha)|`

B

`x-alpha "and log"_(e)|"sin"(x-alpha)|`

C

`x-alpha "and log"_(e)|"cos"(x-alpha)|`

D

`x+alpha "and log"_(e)|"sin"(x-alpha)|`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `I = int(tan x + tan alpha)/(tan x - tan alpha)dx, alpha in (0,(pi)/(2))`
`= int((sinx)/(cosx)+(sin alpha)/(cos alpha))/((sinx)/(cosx)-(sin alpha)/(cos alpha))dx`
`=int(sin x cos alpha + sin alpha cos x)/(sin x cos alpha - sin alpha cos x)dx`
`=int(sin(x+alpha))/(sin(x-alpha))dx`
Now, put `x-alpha = t rArr dx = dt, so`
`I=int(sin(t+2 alpha))/(sin t)dt`
`=int(sin t cos 2 alpha + sin 2 alpha cos t)/(sin t)dt`
`=int(cos 2 alpha + sin 2 alpha (cos t)/(sin t))dt`
`= t(cos 2 alpha)+(sin 2 alpha)log_(e)|sin t|+C`
`=(x-alpha) cos 2 alpha +(sin 2 alpha)log_(e)|sin(x-alpha)|+C`
`= A(x) cos 2 alpha + B(x) sin 2 alpha + C` (given)
Now on comparing, we get
`A(x) = x - alpha and B(x) = log_(e)|sin(x-alpha)|`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL INTEGRALS|6 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise INTEGRATION BY PARTS|11 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos

Similar Questions

Explore conceptually related problems

int(tan x-tan alpha)/(tan x+tan alpha)dx

int{1+tan x*tan(x+alpha)}dx=

The value of the integral int_(0)^(3alpha) cosec (x-alpha)cosec(x-2alpha)dx is

(x tan alpha+y cot alpha)(x cot alpha+y tan alpha)-4xy cos^(2)2 alpha=

Integrate the functions (cos2x-cos2 alpha)/(cos x-cos alpha)

" If "20 alpha=pi" then tan "alpha" .tan2"alpha" .tan3"alpha" ....."tan9 alpha=

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to