Home
Class 12
MATHS
If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2)...

If `int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C`, where C is a constant of integration, then g(-1) is equal to

A

-1

B

1

C

`-(1)/(2)`

D

`-(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 e^{-x^2} \, dx \) and express it in the form \( g(x)e^{-x^2} + C \), we will use integration by parts and substitution. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = -x^2 \). Then, we have: \[ dt = -2x \, dx \quad \Rightarrow \quad dx = -\frac{1}{2x} \, dt \] Also, \( x^2 = -t \) implies \( x^4 = (-t)^2 = t^2 \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral: \[ \int x^5 e^{-x^2} \, dx = \int x^5 e^t \left(-\frac{1}{2x}\right) dt = -\frac{1}{2} \int x^4 e^t \, dt \] Now, substituting \( x^4 = t^2 \): \[ -\frac{1}{2} \int t^2 e^t \, dt \] ### Step 3: Integration by Parts Using integration by parts, let: - \( u = t^2 \) and \( dv = e^t \, dt \) - Then, \( du = 2t \, dt \) and \( v = e^t \) Applying integration by parts: \[ \int t^2 e^t \, dt = t^2 e^t - \int 2t e^t \, dt \] ### Step 4: Second Integration by Parts For the integral \( \int 2t e^t \, dt \): - Let \( u = 2t \) and \( dv = e^t \, dt \) - Then, \( du = 2 \, dt \) and \( v = e^t \) Thus, \[ \int 2t e^t \, dt = 2t e^t - \int 2 e^t \, dt = 2t e^t - 2e^t \] ### Step 5: Combine Results Substituting back: \[ \int t^2 e^t \, dt = t^2 e^t - (2t e^t - 2e^t) = t^2 e^t - 2t e^t + 2e^t \] So, \[ -\frac{1}{2} \int t^2 e^t \, dt = -\frac{1}{2} \left( t^2 e^t - 2t e^t + 2e^t \right) \] ### Step 6: Substitute Back to \( x \) Now, substituting back \( t = -x^2 \): \[ = -\frac{1}{2} \left( (-x^2)^2 e^{-x^2} - 2(-x^2)e^{-x^2} + 2e^{-x^2} \right) \] This simplifies to: \[ = -\frac{1}{2} \left( x^4 e^{-x^2} + 2x^2 e^{-x^2} + 2e^{-x^2} \right) \] Thus, \[ = -\frac{1}{2} x^4 e^{-x^2} - x^2 e^{-x^2} - e^{-x^2} + C \] ### Step 7: Identify \( g(x) \) From the expression \( \int x^5 e^{-x^2} \, dx = g(x)e^{-x^2} + C \), we can identify: \[ g(x) = -\frac{1}{2} x^4 - x^2 - 1 \] ### Step 8: Find \( g(-1) \) Now, substituting \( x = -1 \): \[ g(-1) = -\frac{1}{2} (-1)^4 - (-1)^2 - 1 = -\frac{1}{2}(1) - 1 - 1 = -\frac{1}{2} - 1 - 1 = -\frac{1}{2} - 2 = -\frac{5}{2} \] ### Final Answer Thus, \( g(-1) = -\frac{5}{2} \). ---

To solve the integral \( \int x^5 e^{-x^2} \, dx \) and express it in the form \( g(x)e^{-x^2} + C \), we will use integration by parts and substitution. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = -x^2 \). Then, we have: \[ dt = -2x \, dx \quad \Rightarrow \quad dx = -\frac{1}{2x} \, dt \] Also, \( x^2 = -t \) implies \( x^4 = (-t)^2 = t^2 \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise IRRATIONAL FUNCTION & PARTIAL FRACTION|4 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL INTEGRALS|6 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos

Similar Questions

Explore conceptually related problems

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

If int(x)/(x+1+e^(x))dx=px+qln|x+1+e^(x)|+c , where c is the constant of integration, then p+q is equal to

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

If int(2e^(x) +3e^(-x))/(4e^(x)+7e^(-x))dx=(1)/(14)(ux+v log_(e ) (4e^(x)+7e^(-x)))+C , where C is a constant of integration, then u+v is equal to ________.

If int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int tan^(5)x dx =Atan^(4)x+Btan^(2)x+g(x)+C , where C is constant of integration and g(0)=0, then