Home
Class 12
MATHS
If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2...

If `int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C`, where C is a constant of integration, then f(x) is equal to

A

`(2)/(3)(x+2)`

B

`(1)/(3)(x+4)`

C

`(2)/(3)(x-4)`

D

`(1)/(3)(x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x+1}{\sqrt{2x-1}} \, dx \) and find \( f(x) \) such that \[ \int \frac{x+1}{\sqrt{2x-1}} \, dx = f(x) \sqrt{2x-1} + C, \] we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{2x - 1} \). Then, we have: \[ t^2 = 2x - 1 \implies 2x = t^2 + 1 \implies x = \frac{t^2 + 1}{2}. \] ### Step 2: Differentiate to find \( dx \) Now, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{2\sqrt{2x - 1}} \cdot 2 = \frac{1}{\sqrt{2x - 1}} \implies dx = \sqrt{2x - 1} \, dt = t \, dt. \] ### Step 3: Substitute in the integral Now substitute \( x \) and \( dx \) in the integral: \[ \int \frac{x + 1}{\sqrt{2x - 1}} \, dx = \int \frac{\frac{t^2 + 1}{2} + 1}{t} \cdot t \, dt. \] This simplifies to: \[ \int \left(\frac{t^2 + 1}{2} + 1\right) dt = \int \left(\frac{t^2 + 1 + 2}{2}\right) dt = \int \left(\frac{t^2 + 3}{2}\right) dt. \] ### Step 4: Integrate Now, integrate: \[ = \frac{1}{2} \int (t^2 + 3) \, dt = \frac{1}{2} \left(\frac{t^3}{3} + 3t\right) + C = \frac{t^3}{6} + \frac{3t}{2} + C. \] ### Step 5: Substitute back for \( t \) Now substitute back \( t = \sqrt{2x - 1} \): \[ = \frac{(\sqrt{2x - 1})^3}{6} + \frac{3\sqrt{2x - 1}}{2} + C = \frac{(2x - 1)^{3/2}}{6} + \frac{3(2x - 1)^{1/2}}{2} + C. \] ### Step 6: Factor out \( \sqrt{2x - 1} \) Now, we can factor out \( \sqrt{2x - 1} \): \[ = \sqrt{2x - 1} \left(\frac{(2x - 1)}{6} + \frac{3}{2}\right) + C. \] ### Step 7: Simplify the expression Combine the terms inside the parentheses: \[ = \sqrt{2x - 1} \left(\frac{2x - 1 + 9}{6}\right) + C = \sqrt{2x - 1} \left(\frac{2x + 8}{6}\right) + C. \] ### Step 8: Identify \( f(x) \) Thus, we have: \[ \int \frac{x+1}{\sqrt{2x-1}} \, dx = f(x) \sqrt{2x-1} + C, \] where \[ f(x) = \frac{2x + 8}{6} = \frac{x + 4}{3}. \] ### Final Answer Therefore, the function \( f(x) \) is: \[ \boxed{\frac{x + 4}{3}}. \]

To solve the integral \( \int \frac{x+1}{\sqrt{2x-1}} \, dx \) and find \( f(x) \) such that \[ \int \frac{x+1}{\sqrt{2x-1}} \, dx = f(x) \sqrt{2x-1} + C, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL INTEGRALS|6 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise INTEGRATION BY PARTS|11 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos

Similar Questions

Explore conceptually related problems

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

if int x^(5)e^(-x^(2))dx=g(x)e^(-x^(2))+c where c is a constant of integration then g(-1) is equal to

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

The value of int(x dx)/((x+3)sqrt(x+1) is (where , c is the constant of integration )