Home
Class 12
MATHS
Let n ge 2 be a natural number and 0 lt ...

Let `n ge 2` be a natural number and `0 lt theta lt (pi)/(2)`, Then, `int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta` is equal to (where C is a constant of integration)

A

`(n)/(n^(2)-1)(1-(1)/(sin^(n+1)theta))^((n+1)/(n)+C`

B

`(n)/(n^(2)-1)(1+(1)/(sin^(n+1)theta))^((n+1)/(n)+C`

C

`(n)/(n^(2)-1)(1-(1)/(sin^(n+1)theta))^((n+1)/(n)+C`

D

`(n)/(n^(2)+1)(1-(1)/(sin^(n+1)theta))^((n+1)/(n)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `I = int((sin^(n)theta - sin theta)^(1//n) cos theta)/(sin^(n+1)theta)d theta`
Put `sin theta = t rArr cos theta d theta = dt`
`therefore I = int((t^(n)-t)^(1//n))/(t^(n+1))dt`
`=int([t^(n)(1-(t)/(t^(n)))]^(1//n))/(t^(n+1))dt`
`= int(t(1-1//t^(n-1))^(1//n))/(t^(n+1))dt = int((1-1//t^(n-1))^(1//n))/(t^(n))dt`
Put `1-(1)/(t^(n-1))=u`
or `1 - t^(-(n-1))=u rArr ((n-1))/(t^(n))dt = du`
`rArr" "(dt)/(t^(n))=(du)/(n-1)`
`rArr I = int(u^(1//n)du)/(n-1)=(u^(1/n+1))/((n-1)((1)/(n)+1))+C`
`=(n(1-(1)/(t^(n-1)))^((n+1)/(n)))/((n-1)(n+1))+C`
`(n(1-(1)/(sin^(n-1) theta))^((n+1)/(n)))/(n^(2)-1)+C" "[therefore u=1-(1)/(t^(n-1))and t = sin theta]`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL INTEGRALS|6 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise INTEGRATION BY PARTS|11 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos

Similar Questions

Explore conceptually related problems

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

int_(0)^((pi)/(2))(cos theta-sin theta)/((1+cos theta)(1+sin theta))d theta equals -

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

(cos theta + i sin theta) ^ (n) = cos n theta + i sin n theta

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

If 0 lt theta lt (pi)/(4) , then what is sqrt(1-2 sin theta cos theta) equal to ?