Home
Class 12
MATHS
If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2...

If `f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0)`, and f(0) = 0, then the value of f(1) is

A

`-(1)/(2)`

B

`-(1)/(4)`

C

`(1)/(4)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} \, dx \] with the condition that \( f(0) = 0 \) and find \( f(1) \). ### Step 1: Simplifying the Integral We start by simplifying the integrand. Notice that we can factor out \( x^7 \) from the denominator: \[ f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} \, dx \] Taking \( x^7 \) out of the denominator gives us: \[ = \int \frac{5x^8 + 7x^6}{x^{14} \left(\frac{x^2}{x^7} + \frac{1}{x^7} + 2\right)^2} \, dx \] This simplifies to: \[ = \int \frac{5x^8 + 7x^6}{x^{14} \left(x^{-5} + x^{-7} + 2\right)^2} \, dx \] ### Step 2: Changing Variables Let \( t = x^{-5} + x^{-7} + 2 \). We need to find \( dt \): \[ dt = \left(-5x^{-6} - 7x^{-8}\right) dx \] Thus, \[ dx = \frac{dt}{-5x^{-6} - 7x^{-8}} \] ### Step 3: Substituting in the Integral Substituting \( t \) into the integral, we have: \[ f(t) = \int \frac{-dt}{t^2} \] ### Step 4: Integrating Now we can integrate: \[ f(t) = \int -t^{-2} \, dt = \frac{1}{t} + C \] ### Step 5: Back Substituting Now we substitute back for \( t \): \[ f(x) = \frac{1}{x^{-5} + x^{-7} + 2} + C \] ### Step 6: Applying the Condition \( f(0) = 0 \) To find \( C \), we use the condition \( f(0) = 0 \): \[ f(0) = \frac{1}{0 + 0 + 2} + C = 0 \implies C = -\frac{1}{2} \] Thus, \[ f(x) = \frac{1}{x^{-5} + x^{-7} + 2} - \frac{1}{2} \] ### Step 7: Evaluating \( f(1) \) Now we evaluate \( f(1) \): \[ f(1) = \frac{1}{1^{-5} + 1^{-7} + 2} - \frac{1}{2} \] Calculating the terms: \[ = \frac{1}{1 + 1 + 2} - \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = \frac{1}{4} - \frac{2}{4} = -\frac{1}{4} \] ### Final Result Thus, the value of \( f(1) \) is: \[ f(1) = \frac{1}{4} \]

To solve the problem, we need to evaluate the integral \[ f(x) = \int \frac{5x^8 + 7x^6}{(x^2 + 1 + 2x^7)^2} \, dx \] with the condition that \( f(0) = 0 \) and find \( f(1) \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL INTEGRALS|6 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise INTEGRATION BY PARTS|11 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int(5x^8+7x^6)/((x^2+1+2x^7)^2)dx, (xge0), f(0)=0 and f(1)=1/K , then the value of K is _______ .

If f(x)=int(3x^(2)+1)/((x^(2)-1)^(3))dx and f(0)=0, then the value of (2)/(f(2))| is

If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value of f(1) is :

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2 , then the value of f(-5) is _________.

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

f(x)=int(5x^8+7x^6)/(x^2+1+2x^7)^2dx , if f(0)=0 then find f(1)=1/k. Then k is

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

If F(x)=int(x+sin x)/(1+cos x)dx and F(0)=0 then the value of f((pi)/(2)) is