Home
Class 12
MATHS
If int e^(sec x)(sec x tan x f(x)+(sec x...

If `int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C`, then a possible choice of f(x) is

A

`x sec x + tan x + (1)/(2)`

B

`sec x + tan x + (1)/(2)`

C

`sec x + x tan x -(1)/(2)`

D

`sec x - tan x -(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \int e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) dx = e^{\sec x} f(x) + C \] ### Step 1: Differentiate Both Sides We differentiate both sides of the equation with respect to \(x\). Using the product rule on the right-hand side, we have: \[ \frac{d}{dx} \left( e^{\sec x} f(x) \right) = e^{\sec x} f'(x) + e^{\sec x} \sec x \tan x f(x) \] The left-hand side, using the Leibniz rule for differentiation under the integral sign, gives us: \[ e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) \] So, we equate both sides: \[ e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) = e^{\sec x} f'(x) + e^{\sec x} \sec x \tan x f(x) \] ### Step 2: Simplify the Equation We can cancel \(e^{\sec x}\) from both sides (assuming \(e^{\sec x} \neq 0\)): \[ \sec x \tan x f(x) + \sec x \tan x + \sec^2 x = f'(x) + \sec x \tan x f(x) \] This simplifies to: \[ \sec x \tan x + \sec^2 x = f'(x) \] ### Step 3: Integrate Both Sides Now, we integrate both sides with respect to \(x\): \[ f(x) = \int \left( \sec x \tan x + \sec^2 x \right) dx \] ### Step 4: Solve the Integrals The integral of \(\sec x \tan x\) is \(\sec x\) and the integral of \(\sec^2 x\) is \(\tan x\): \[ f(x) = \sec x + \tan x + C \] ### Conclusion Thus, a possible choice of \(f(x)\) is: \[ f(x) = \sec x + \tan x + C \]

To solve the given problem, we start with the equation: \[ \int e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) dx = e^{\sec x} f(x) + C \] ### Step 1: Differentiate Both Sides We differentiate both sides of the equation with respect to \(x\). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise IRRATIONAL FUNCTION & PARTIAL FRACTION|4 Videos
  • INDEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise SOME SPECIAL INTEGRALS|6 Videos
  • HYPERBOLA

    IIT JEE PREVIOUS YEAR|Exercise EQUATION OF CHORD OF CONTACT,CHORD BISECTED DIAMETER,ASYMPTOTE AND RECTENGULAR HYPERBOLA|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    IIT JEE PREVIOUS YEAR|Exercise SUM AND DIFFERENCE FORMULAE ( FILL IN THE BLANKS)|3 Videos

Similar Questions

Explore conceptually related problems

int sec x(sec x+tan x)dx

int sec x(sec x+tan x)dx

int(sec x)/(sec x+tan x)dx=

int e^(x)sec x(1+tan x)dx

int(sec x)/(ln(sec x+tan x))

int(secx- tan x)/(sec x+ tan x) dx

int(sec x)/((sec x+tan x)^(2))dx

" 9."int sec x(sec x+tan x)dx

int e^(x sec x)*sec x(1+x tan x)dx=

int sec x log (sec x+tan x) dx.