Home
Class 11
MATHS
Simplify the following: (i)"sin"(90^(@)+...

Simplify the following: (i)`"sin"(90^(@)+theta)"tan"(270^(@)+theta)cot(90^(@)+theta) cosec(270^(@)+theta)`
(ii) `("sin"(-theta)"tan"(180^(@)+theta)"tan"(90^(@)+theta))/(cot(90^(@)-theta)cos(360^(@)-theta)"sin"(180^(@)-theta))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### (i) Simplifying `sin(90° + θ) * tan(270° + θ) * cot(90° + θ) * cosec(270° + θ)` 1. **Evaluate `sin(90° + θ)`**: - Using the identity: `sin(90° + θ) = cos(θ)`. - So, `sin(90° + θ) = cos(θ)`. 2. **Evaluate `tan(270° + θ)`**: - Using the identity: `tan(270° + θ) = cot(θ)`. - So, `tan(270° + θ) = cot(θ)`. 3. **Evaluate `cot(90° + θ)`**: - Using the identity: `cot(90° + θ) = -tan(θ)`. - So, `cot(90° + θ) = -tan(θ)`. 4. **Evaluate `cosec(270° + θ)`**: - Using the identity: `cosec(270° + θ) = -sec(θ)`. - So, `cosec(270° + θ) = -sec(θ)`. 5. **Combine all the results**: - Now substituting back into the expression: \[ cos(θ) * cot(θ) * (-tan(θ)) * (-sec(θ)) \] - This simplifies to: \[ cos(θ) * cot(θ) * tan(θ) * sec(θ) \] 6. **Simplify further**: - Since `cot(θ) * tan(θ) = 1` and `cos(θ) * sec(θ) = 1`, we have: \[ 1 * 1 = 1 \] 7. **Final result**: - The simplified expression is: \[ -1 \] ### (ii) Simplifying `sin(-θ) * tan(180° + θ) * tan(90° + θ) / (cot(90° - θ) * cos(360° - θ) * sin(180° - θ))` 1. **Evaluate `sin(-θ)`**: - Using the identity: `sin(-θ) = -sin(θ)`. - So, `sin(-θ) = -sin(θ)`. 2. **Evaluate `tan(180° + θ)`**: - Using the identity: `tan(180° + θ) = tan(θ)`. - So, `tan(180° + θ) = tan(θ)`. 3. **Evaluate `tan(90° + θ)`**: - Using the identity: `tan(90° + θ) = -cot(θ)`. - So, `tan(90° + θ) = -cot(θ)`. 4. **Evaluate `cot(90° - θ)`**: - Using the identity: `cot(90° - θ) = tan(θ)`. - So, `cot(90° - θ) = tan(θ)`. 5. **Evaluate `cos(360° - θ)`**: - Using the identity: `cos(360° - θ) = cos(θ)`. - So, `cos(360° - θ) = cos(θ)`. 6. **Evaluate `sin(180° - θ)`**: - Using the identity: `sin(180° - θ) = sin(θ)`. - So, `sin(180° - θ) = sin(θ)`. 7. **Combine all the results**: - Now substituting back into the expression: \[ (-sin(θ)) * (tan(θ)) * (-cot(θ)) / (tan(θ) * cos(θ) * sin(θ)) \] - This simplifies to: \[ (sin(θ) * tan(θ) * cot(θ)) / (tan(θ) * cos(θ) * sin(θ)) \] 8. **Simplify further**: - Since `tan(θ) * cot(θ) = 1` and `sin(θ)` cancels out: \[ 1 / cos(θ) \] 9. **Final result**: - The simplified expression is: \[ sec(θ) \] ### Summary of Results: - (i) The simplified expression is `-1`. - (ii) The simplified expression is `sec(θ)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(d)Long Answer type Question-I|6 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e) Short Answer type Question|7 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(c) Long Answer type Question-II|2 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

(COS(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cos ec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

Prove that: (tan(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)csc(90^(@)-theta))=1

(cos theta)/(sin(90^(@)+theta))+(sin(-theta))/(sin(180^(@)+theta))-(tan(90^(@)+theta))/(cot theta)

(cos(90^(@)-theta).sec(90^(@)-theta).tantheta)/(cosec(90^(@)-theta).sin(90^(@)-theta).cot(90^(@)-theta))=?

Simplify (sin(180^(@)+theta)cos(360^(@)-theta)tan(270^(@)-theta))/(sec^(2)(90^(@)+theta)tan(-theta)sin(270^(@)+theta))

Prove that (cos theta)/(sin(90^(@)+theta))+(sin(-theta))/(sin(180^(@)+theta))-(tan(90^(@)+theta))/(cot(theta))=3

Prove that: (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cos ec(-theta)sin(270^(@)+theta))=1