Home
Class 11
MATHS
Evalute: "sin"15^(@) cos15^(@), "tan"1...

Evalute: `"sin"15^(@)`
`cos15^(@), "tan"15^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sin 15^\circ \), \( \cos 15^\circ \), and \( \tan 15^\circ \), we will use the angle subtraction formulas for sine and cosine. ### Step 1: Evaluate \( \sin 15^\circ \) We can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Using the sine subtraction formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Let \( a = 45^\circ \) and \( b = 30^\circ \): \[ \sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \] Substituting the known values: \[ \sin 45^\circ = \frac{1}{\sqrt{2}}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \cos 45^\circ = \frac{1}{\sqrt{2}}, \quad \sin 30^\circ = \frac{1}{2} \] Now substituting these values into the equation: \[ \sin 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] Calculating this gives: \[ \sin 15^\circ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### Step 2: Evaluate \( \cos 15^\circ \) Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Again, let \( a = 45^\circ \) and \( b = 30^\circ \): \[ \cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \] Substituting the known values: \[ \cos 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] Calculating this gives: \[ \cos 15^\circ = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 3: Evaluate \( \tan 15^\circ \) Using the definition of tangent: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Thus, \[ \tan 15^\circ = \frac{\sin 15^\circ}{\cos 15^\circ} = \frac{\frac{\sqrt{3} - 1}{2\sqrt{2}}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}} \] The \( 2\sqrt{2} \) cancels out: \[ \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Final Results - \( \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \) - \( \cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}} \) - \( \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-I|13 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-II|4 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(d)Long Answer type Question-I|6 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

sin15^(@)+cos105^(@)=?

Calculate sin 15^(@) and cos15^(@)

Knowledge Check

  • sin 15^(@) + cos 105 ^(@) =

    A
    0
    B
    ` 2 sin 15 ^(@)`
    C
    `cos 15^(@) + sin 15^(@)`
    D
    `sin 15^(@) - cos 15^(@)`
  • Value of Sin15^(@).cos15^(@) is:

    A
    `1`
    B
    `1//2`
    C
    `1//4`
    D
    `(sqrt3)/(2)`
  • What is the value of 2sin15^(@) cos 15^(@)-4sin^(3)15^(@)cos15^(@) ?

    A
    A) `3sqrt(2)`
    B
    B) `sqrt(3)//2`
    C
    C) `sqrt(3)//4`
    D
    D) `1//2`
  • Similar Questions

    Explore conceptually related problems

    tan15^(@)-cot15^(@)=

    Value of sin15^(@)*cos15^(0) is

    Evaluate |["cos" 15^(@), "sin"15^(@)],["sin" 75^(@), "cos"75^(@)]|

    Find the value of (sin 15^@)/(cos 15^@) xxtan 75^@ .

    Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)