Home
Class 11
MATHS
Write down the value of: cos68^(@) cos8...

Write down the value of: `cos68^(@) cos8^(@)+"sin"68^(@)"sin"8^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 68^\circ \cos 8^\circ + \sin 68^\circ \sin 8^\circ \), we can use the cosine addition formula. Here are the steps: ### Step-by-Step Solution: 1. **Identify the Formula**: We will use the cosine of the difference formula, which states: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] In our case, let \( A = 68^\circ \) and \( B = 8^\circ \). 2. **Apply the Formula**: Substitute \( A \) and \( B \) into the formula: \[ \cos(68^\circ - 8^\circ) = \cos 68^\circ \cos 8^\circ + \sin 68^\circ \sin 8^\circ \] This simplifies to: \[ \cos(60^\circ) = \cos 68^\circ \cos 8^\circ + \sin 68^\circ \sin 8^\circ \] 3. **Calculate \( \cos(60^\circ) \)**: We know that: \[ \cos(60^\circ) = \frac{1}{2} \] 4. **Final Result**: Therefore, we conclude that: \[ \cos 68^\circ \cos 8^\circ + \sin 68^\circ \sin 8^\circ = \frac{1}{2} \] ### Final Answer: \[ \cos 68^\circ \cos 8^\circ + \sin 68^\circ \sin 8^\circ = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-I|13 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-II|4 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(d)Long Answer type Question-I|6 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

The value of cos52^(@)+cos68^(@)+cos172^(@) is

The value of cos52^(@)+cos68^(@)+cos172^(@)

The value of (sin 38^(@) - cos 68^(@))/( cos 68^(@) + sin 38^(@) is

The value of cos 52^(@) + cos 68^(@) + cos 172^(@) is

Write the value of cos^(-1)(cos350)-sin^(-1)(sin350)

cos 38^(@) cos 8^(@) + sin 38^(@)sin 8^(@) is equal to

cos52^(@)+cos68^(@)+cos172^(@)=?

Write the value of sin A cos(90o-A)+cos A sin(90o-A)