Home
Class 11
MATHS
If cos A=(5)/(13), and sin B=(4)/(5), fi...

If cos A`=(5)/(13)`, and sin `B=(4)/(5)`, find sin (A+B), where A,B,(A+B) are positive acute angles.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \sin(A + B) \) given \( \cos A = \frac{5}{13} \) and \( \sin B = \frac{4}{5} \), we can use the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \sin B \cos A \] ### Step 1: Find \( \sin A \) We know that: \[ \sin^2 A + \cos^2 A = 1 \] Substituting the value of \( \cos A \): \[ \sin^2 A + \left(\frac{5}{13}\right)^2 = 1 \] Calculating \( \left(\frac{5}{13}\right)^2 \): \[ \sin^2 A + \frac{25}{169} = 1 \] Now, subtract \( \frac{25}{169} \) from both sides: \[ \sin^2 A = 1 - \frac{25}{169} \] Finding a common denominator: \[ \sin^2 A = \frac{169}{169} - \frac{25}{169} = \frac{144}{169} \] Taking the square root: \[ \sin A = \sqrt{\frac{144}{169}} = \frac{12}{13} \] ### Step 2: Find \( \cos B \) Using the identity: \[ \sin^2 B + \cos^2 B = 1 \] Substituting the value of \( \sin B \): \[ \left(\frac{4}{5}\right)^2 + \cos^2 B = 1 \] Calculating \( \left(\frac{4}{5}\right)^2 \): \[ \frac{16}{25} + \cos^2 B = 1 \] Subtracting \( \frac{16}{25} \) from both sides: \[ \cos^2 B = 1 - \frac{16}{25} \] Finding a common denominator: \[ \cos^2 B = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \cos B = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 3: Substitute into the sine addition formula Now we have: - \( \sin A = \frac{12}{13} \) - \( \cos A = \frac{5}{13} \) - \( \sin B = \frac{4}{5} \) - \( \cos B = \frac{3}{5} \) Substituting these values into the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \sin B \cos A \] Calculating: \[ \sin(A + B) = \left(\frac{12}{13} \cdot \frac{3}{5}\right) + \left(\frac{4}{5} \cdot \frac{5}{13}\right) \] Calculating each term: 1. \( \frac{12}{13} \cdot \frac{3}{5} = \frac{36}{65} \) 2. \( \frac{4}{5} \cdot \frac{5}{13} = \frac{20}{65} \) Adding these results: \[ \sin(A + B) = \frac{36}{65} + \frac{20}{65} = \frac{56}{65} \] ### Final Answer Thus, the value of \( \sin(A + B) \) is: \[ \sin(A + B) = \frac{56}{65} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-II|4 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Short Answer type Question|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e) Short Answer type Question|7 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If cos(A-B)=(5)/(13) and sin(A+B)=(4)/(5) , then find sin2B.

If sin A=(1)/(sqrt(10)) and sin B=(1)/(sqrt(5)), where A and B are positive acute angles,then A+B is equal to

If sinA=(1)/(sqrt(10))andsinB=(1)/(sqrt(5)) , where A and B are positive acute angles, then A+B=?

If sin A=(2)/(sqrt(5)) and cos B=(1)/(sqrt(10)), where A and B are acute angles,then what is the value of A+B

If cos5A=sin(A-30^(@)) where 5A is an acute angle , find A.

If sin A= cos B , where A and B are acute angles, then A+B =__________

If A>0^@ , B<90^@ , such that cos A=(5)/(13) and sin B=(4)/(5) , then the value of sin(A-B)

If sin A+cos B=a and sin B+cos A=b, then sin(A+B) is equal to