Home
Class 11
MATHS
If tanx=a/(a+1) and tany=1/(2a+1) then s...

If `tanx=a/(a+1)` and `tany=1/(2a+1)` then show that one of the values of `x+y=pi/4; a in R, a!= -1, a!= -1/2`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-II|4 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Short Answer type Question|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e) Short Answer type Question|7 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If tanx=2/3 and tany=3/4 then tan(x+y)=

find the value of - y=tan^-1((1+tanx)/(1-tanx))

If tan^(-1)x+tan^(-1)y=(pi)/(4) , and the value of xy<1 ,then show that x+y+xy=1 .

If tanx tany=a and x+y=2b show that tanx and tany are the roots of the equation z^2-(1-a)tan2b*z+a=0

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

If A = [{:(1,tan x),(-tanx,1):}] , then the value of |A' A^(-1)|

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to