Home
Class 11
MATHS
Find "a" and "b" such that a lt 3 "cos" ...

Find `"a"` and `"b"` such that `a lt 3 "cos" theta+5 "sin"(theta-(pi)/(6)) lt b`, holds good for all values of `theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( a < 3 \cos \theta + 5 \sin\left(\theta - \frac{\pi}{6}\right) < b \) for all values of \( \theta \), we will first rewrite the expression \( 5 \sin\left(\theta - \frac{\pi}{6}\right) \) using the sine subtraction formula. ### Step 1: Rewrite the sine term Using the sine subtraction formula: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] we can rewrite \( 5 \sin\left(\theta - \frac{\pi}{6}\right) \) as: \[ 5 \left( \sin \theta \cos\left(\frac{\pi}{6}\right) - \cos \theta \sin\left(\frac{\pi}{6}\right) \right) \] ### Step 2: Substitute the values of cosine and sine We know: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Substituting these values gives: \[ 5 \sin\left(\theta - \frac{\pi}{6}\right) = 5 \left( \sin \theta \cdot \frac{\sqrt{3}}{2} - \cos \theta \cdot \frac{1}{2} \right) = \frac{5\sqrt{3}}{2} \sin \theta - \frac{5}{2} \cos \theta \] ### Step 3: Combine terms Now we can express the entire inequality: \[ 3 \cos \theta + 5 \sin\left(\theta - \frac{\pi}{6}\right) = 3 \cos \theta + \left(\frac{5\sqrt{3}}{2} \sin \theta - \frac{5}{2} \cos \theta\right) \] This simplifies to: \[ \left(3 - \frac{5}{2}\right) \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta = \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \] ### Step 4: Find the maximum and minimum values To find the range of the expression \( \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \), we can use the formula: \[ R = \sqrt{A^2 + B^2} \] where \( A = \frac{1}{2} \) and \( B = \frac{5\sqrt{3}}{2} \): \[ R = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{5\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{75}{4}} = \sqrt{19} \] ### Step 5: Determine the bounds The expression \( \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \) will range from \( -\sqrt{19} \) to \( \sqrt{19} \). Therefore, we have: \[ -\sqrt{19} < \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta < \sqrt{19} \] ### Conclusion Thus, the values of \( a \) and \( b \) are: \[ a = -\sqrt{19}, \quad b = \sqrt{19} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e)Long Answer type Question-II|4 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( f)Short Answer type Question|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3( e) Short Answer type Question|7 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

if 7 cos^(2) theta + 3 sin^2 theta = 4 and 0 lt theta lt (pi)/(2) , then find the value of cot theta

If 0^(@) lt theta lt 90^(@) and cos^(2) theta - sin^(2) theta = (1)/(2) , then what is the value of theta ?

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

Find a and b such that the following inequality holds good for all thetaa<=3cos theta+5sin(theta-(pi)/(6))<=b

If 0^(@) lt theta lt 90^(@) and cos^(2) theta - sin^(2) theta = 1/2 ,then value of theta is?

If 8 cos 2 theta + 8 sec 2theta = 65, 0 lt theta lt (pi)/(2) then the value of 4 cos 4 theta is

If sec theta=2cos theta , where (pi/2) lt theta lt pi , then what is the value of theta ?

If 7 cos^2 theta +3 sin^2 theta =4 and 0 lt theta lt pi//2 , what is the value of tan theta ?

If tan 6 theta = cot 2 theta , where 0 lt 6 theta lt ( pi )/(2) , then what is the value off sec 4 theta ?