Home
Class 11
MATHS
Prove the following by the principle of ...

Prove the following by the principle of mathematical induction: `7+77+777++777++\ ddotn-d igi t s7=7/(81)(10^(n+1)-9n-10)` for all `n in N Bdot`

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise CHAPTER TEST 4|12 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise Exercise|10 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: 7+77+777++777++ddot n-digits7=(7)/(81)(10^(n+1)-9n-10) for all n in NB.

Prove the following by using the Principle of mathematical induction AA n in N n<2^(n)

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by using the Principle of mathematical induction AA n in N 3^(n)>2^(n)

Prove the following by the principle of mathematical induction: 1+2+2^(7)=2^(n+1)-1 for all n in N

Prove the following by the principle of mathematical induction: 3^(n)+7 is divisible by 8 for all n in N.

Prove the following by the principle of mathematical induction: (ab)^(n)=a^(n)b^(n) for all n in N.

Prove the following by the principle of mathematical induction: n^(3)-7n+3 is divisible 3 for all n in N.

Prove the following by the principle of mathematical induction: 5^(n)-1 is divisible by 24 for all n in N.

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+3)le(n+3)!