Home
Class 12
MATHS
If matrix A=[a(ij)](3xx2) and a(ij)=(3i...

If matrix `A=[a_(ij)]_(3xx2)` and `a_(ij)=(3i-2j)^(2)`, then find matrix A.

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A = [a_{ij}]_{3 \times 2} \) where \( a_{ij} = (3i - 2j)^2 \), we will calculate each element of the matrix based on the given formula. ### Step-by-Step Solution: 1. **Identify the dimensions of the matrix**: - The matrix \( A \) is of order \( 3 \times 2 \), which means it has 3 rows and 2 columns. 2. **Determine the indices**: - The row indices \( i \) can take values 1, 2, and 3. - The column indices \( j \) can take values 1 and 2. 3. **Calculate each element of the matrix**: - **Row 1**: - \( a_{11} = (3 \cdot 1 - 2 \cdot 1)^2 = (3 - 2)^2 = 1^2 = 1 \) - \( a_{12} = (3 \cdot 1 - 2 \cdot 2)^2 = (3 - 4)^2 = (-1)^2 = 1 \) - **Row 2**: - \( a_{21} = (3 \cdot 2 - 2 \cdot 1)^2 = (6 - 2)^2 = 4^2 = 16 \) - \( a_{22} = (3 \cdot 2 - 2 \cdot 2)^2 = (6 - 4)^2 = 2^2 = 4 \) - **Row 3**: - \( a_{31} = (3 \cdot 3 - 2 \cdot 1)^2 = (9 - 2)^2 = 7^2 = 49 \) - \( a_{32} = (3 \cdot 3 - 2 \cdot 2)^2 = (9 - 4)^2 = 5^2 = 25 \) 4. **Construct the matrix**: - Now that we have all the elements, we can write the matrix \( A \): \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 16 & 4 \\ 49 & 25 \end{bmatrix} \] ### Final Answer: The matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 1 \\ 16 & 4 \\ 49 & 25 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx3) , difined as a_(ij)=i^(2)-j+1 , then find matrix A.

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

" In a square matrix "A=[a_(ij)]" ,if "i>j" and "a_(ij)=0" then that matrix 'A' is an "

[" A square matrix "A=[a_(ij)]" if "I