Home
Class 12
MATHS
If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] ...

If `A=[(3,1),(-1,2)]` and `I=[(1,0),(0,1)]` find 'k' so that `A^(2)=5A+kI`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that \( A^2 = 5A + kI \), where \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \) and \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \) which is \( A \cdot A \). \[ A^2 = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 3 + 1 \cdot (-1) = 9 - 1 = 8 \) - First row, second column: \( 3 \cdot 1 + 1 \cdot 2 = 3 + 2 = 5 \) - Second row, first column: \( -1 \cdot 3 + 2 \cdot (-1) = -3 - 2 = -5 \) - Second row, second column: \( -1 \cdot 1 + 2 \cdot 2 = -1 + 4 = 3 \) Thus, \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Next, we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} \] ### Step 3: Calculate \( kI \) Now, we calculate \( kI \): \[ kI = k \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \] ### Step 4: Set up the equation \( A^2 = 5A + kI \) We now have: \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] \[ 5A + kI = \begin{pmatrix} 15 + k & 5 \\ -5 & 10 + k \end{pmatrix} \] Setting these equal: \[ \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} 15 + k & 5 \\ -5 & 10 + k \end{pmatrix} \] ### Step 5: Solve for \( k \) From the equality of matrices, we can set up the following equations: 1. \( 8 = 15 + k \) 2. \( 3 = 10 + k \) From the first equation: \[ k = 8 - 15 = -7 \] From the second equation: \[ k = 3 - 10 = -7 \] Both equations give us the same value for \( k \). ### Conclusion Thus, the value of \( k \) is: \[ \boxed{-7} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

If AA=[[3,-24,-2]] and I=[[1,00,1]], find k so that A^(2)=kA-2I

If A=[10-17] and I=[1001], then find k so that A^(2)=8A+kI

If A=[(2,3,1),(0,-1,5)] B=[(1,2,-1),(0,-1,3)] find 2A-3B

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A=[[1,0-1,7]], find k such that A^(2)-8A+kI=O

If A = [(2,0,1),(-1,1,5)] and B = [(-1,1,0),(0,1,-2)] then find AB'