Home
Class 12
MATHS
If A[(1,0,2),(0,2,1),(2,0,3)] and A^(3)-...

If `A[(1,0,2),(0,2,1),(2,0,3)]` and `A^(3)-6A^(2)+7A+kI_(3)=O` find k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation \( A^3 - 6A^2 + 7A + kI_3 = O \), where \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2 = 1 + 0 + 4 = 5 \) - \( 1 \cdot 0 + 0 \cdot 2 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 1 \cdot 2 + 0 \cdot 1 + 2 \cdot 3 = 2 + 0 + 6 = 8 \) - Second row: - \( 0 \cdot 1 + 2 \cdot 0 + 1 \cdot 2 = 0 + 0 + 2 = 2 \) - \( 0 \cdot 0 + 2 \cdot 2 + 1 \cdot 0 = 0 + 4 + 0 = 4 \) - \( 0 \cdot 2 + 2 \cdot 1 + 1 \cdot 3 = 0 + 2 + 3 = 5 \) - Third row: - \( 2 \cdot 1 + 0 \cdot 0 + 3 \cdot 2 = 2 + 0 + 6 = 8 \) - \( 2 \cdot 0 + 0 \cdot 2 + 3 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 2 \cdot 2 + 0 \cdot 1 + 3 \cdot 3 = 4 + 0 + 9 = 13 \) Thus, we have: \[ A^2 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the elements of \( A^3 \): - First row: - \( 5 \cdot 1 + 0 \cdot 0 + 8 \cdot 2 = 5 + 0 + 16 = 21 \) - \( 5 \cdot 0 + 0 \cdot 2 + 8 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 5 \cdot 2 + 0 \cdot 1 + 8 \cdot 3 = 10 + 0 + 24 = 34 \) - Second row: - \( 2 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 = 2 + 0 + 10 = 12 \) - \( 2 \cdot 0 + 4 \cdot 2 + 5 \cdot 0 = 0 + 8 + 0 = 8 \) - \( 2 \cdot 2 + 4 \cdot 1 + 5 \cdot 3 = 4 + 4 + 15 = 23 \) - Third row: - \( 8 \cdot 1 + 0 \cdot 0 + 13 \cdot 2 = 8 + 0 + 26 = 34 \) - \( 8 \cdot 0 + 0 \cdot 2 + 13 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 8 \cdot 2 + 0 \cdot 1 + 13 \cdot 3 = 16 + 0 + 39 = 55 \) Thus, we have: \[ A^3 = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} \] ### Step 3: Substitute into the equation Now, we substitute \( A^3 \), \( A^2 \), and \( A \) into the equation \( A^3 - 6A^2 + 7A + kI_3 = O \): \[ \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} - 6 \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} + 7 \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} + k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Calculating each term: 1. **Calculate \( -6A^2 \)**: \[ -6A^2 = -6 \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} = \begin{pmatrix} -30 & 0 & -48 \\ -12 & -24 & -30 \\ -48 & 0 & -78 \end{pmatrix} \] 2. **Calculate \( 7A \)**: \[ 7A = 7 \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} \] 3. **Combine all terms**: \[ A^3 - 6A^2 + 7A + kI_3 = \begin{pmatrix} 21 - 30 + 7 + k & 0 + 0 + 0 & 34 - 48 + 14 \\ 12 - 12 + 0 & 8 - 24 + 14 & 23 - 30 + 7 \\ 34 - 48 + 14 & 0 + 0 + 0 & 55 - 78 + 21 \end{pmatrix} \] This simplifies to: \[ = \begin{pmatrix} -2 + k & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 + k \end{pmatrix} \] ### Step 4: Set the matrix equal to zero Setting the resulting matrix equal to the zero matrix gives us the equations: 1. \( -2 + k = 0 \) 2. \( -2 = 0 \) (which is not possible) 3. \( -2 + k = 0 \) From the first and third equations, we find: \[ k = 2 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

A = [[1,0,20,2,12,0,3]] and A ^ (2) -6A ^ (2) + 7A + kI_ (3) = 0

If A=[[1,0,20,2,12,0,3]], prove that A^(3)-6A^(2)+7A+2I=0

If A= [{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x^(2)+7x+k=0 then the value of k is

If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] . find A^(2)-5A+6I and hence , find a matrix X such that A^(2)-5A+6I+X=O .

If A=[(2 ,3,-5 ),(1, 2,-1)] and B=[(0, 5,1),(-2, 7, 3)] , find A+B and A-B

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

If A=[(1,-2,0),(2,1,3),(0,-2,1)] and B=[(7,2,-6),(-2,1,-3),(-4,2,5)] , find AB Hence , solve the system of equation x-2y=10, 2x+y+3z=8 and -2y+z=7.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).