Home
Class 12
MATHS
Let A=[(1,2,3),(2,3,4),(-1,1,2)] and B=[...

Let `A=[(1,2,3),(2,3,4),(-1,1,2)]` and `B=[(0,2,-1),(0,3,4),(0,-2,-3)]` Find AB and BA ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the matrices \( AB \) and \( BA \), we will follow the matrix multiplication rules, which involve taking the dot product of rows from the first matrix with columns from the second matrix. ### Given Matrices: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ -1 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 & -1 \\ 0 & 3 & 4 \\ 0 & -2 & -3 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we will compute each element of the resulting matrix by taking the dot product of the rows of \( A \) with the columns of \( B \). 1. **First Row of \( AB \)**: - \( (1, 2, 3) \cdot (0, 0, 0) = 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 = 0 \) - \( (1, 2, 3) \cdot (2, 3, -2) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot -2 = 2 + 6 - 6 = 2 \) - \( (1, 2, 3) \cdot (-1, 4, -3) = 1 \cdot -1 + 2 \cdot 4 + 3 \cdot -3 = -1 + 8 - 9 = -2 \) 2. **Second Row of \( AB \)**: - \( (2, 3, 4) \cdot (0, 0, 0) = 2 \cdot 0 + 3 \cdot 0 + 4 \cdot 0 = 0 \) - \( (2, 3, 4) \cdot (2, 3, -2) = 2 \cdot 2 + 3 \cdot 3 + 4 \cdot -2 = 4 + 9 - 8 = 5 \) - \( (2, 3, 4) \cdot (-1, 4, -3) = 2 \cdot -1 + 3 \cdot 4 + 4 \cdot -3 = -2 + 12 - 12 = -2 \) 3. **Third Row of \( AB \)**: - \( (-1, 1, 2) \cdot (0, 0, 0) = -1 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 = 0 \) - \( (-1, 1, 2) \cdot (2, 3, -2) = -1 \cdot 2 + 1 \cdot 3 + 2 \cdot -2 = -2 + 3 - 4 = -3 \) - \( (-1, 1, 2) \cdot (-1, 4, -3) = -1 \cdot -1 + 1 \cdot 4 + 2 \cdot -3 = 1 + 4 - 6 = -1 \) Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} 0 & 2 & -2 \\ 0 & 5 & -2 \\ 0 & -3 & -1 \end{pmatrix} \] ### Step 2: Calculate \( BA \) Now, we will calculate \( BA \) using the same method. 1. **First Row of \( BA \)**: - \( (0, 2, -1) \cdot (1, 2, 3) = 0 \cdot 1 + 2 \cdot 2 + -1 \cdot 3 = 0 + 4 - 3 = 1 \) - \( (0, 2, -1) \cdot (2, 3, 4) = 0 \cdot 2 + 2 \cdot 3 + -1 \cdot 4 = 0 + 6 - 4 = 2 \) - \( (0, 2, -1) \cdot (-1, 1, 2) = 0 \cdot -1 + 2 \cdot 1 + -1 \cdot 2 = 0 + 2 - 2 = 0 \) 2. **Second Row of \( BA \)**: - \( (0, 3, 4) \cdot (1, 2, 3) = 0 \cdot 1 + 3 \cdot 2 + 4 \cdot 3 = 0 + 6 + 12 = 18 \) - \( (0, 3, 4) \cdot (2, 3, 4) = 0 \cdot 2 + 3 \cdot 3 + 4 \cdot 4 = 0 + 9 + 16 = 25 \) - \( (0, 3, 4) \cdot (-1, 1, 2) = 0 \cdot -1 + 3 \cdot 1 + 4 \cdot 2 = 0 + 3 + 8 = 11 \) 3. **Third Row of \( BA \)**: - \( (0, -2, -3) \cdot (1, 2, 3) = 0 \cdot 1 + -2 \cdot 2 + -3 \cdot 3 = 0 - 4 - 9 = -13 \) - \( (0, -2, -3) \cdot (2, 3, 4) = 0 \cdot 2 + -2 \cdot 3 + -3 \cdot 4 = 0 - 6 - 12 = -18 \) - \( (0, -2, -3) \cdot (-1, 1, 2) = 0 \cdot -1 + -2 \cdot 1 + -3 \cdot 2 = 0 - 2 - 6 = -8 \) Thus, the product \( BA \) is: \[ BA = \begin{pmatrix} 1 & 2 & 0 \\ 18 & 25 & 11 \\ -13 & -18 & -8 \end{pmatrix} \] ### Final Results: \[ AB = \begin{pmatrix} 0 & 2 & -2 \\ 0 & 5 & -2 \\ 0 & -3 & -1 \end{pmatrix}, \quad BA = \begin{pmatrix} 1 & 2 & 0 \\ 18 & 25 & 11 \\ -13 & -18 & -8 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(1,-2,3),(-4,2,5):}]" and "B=[{:(2,3),(4,5),(-2,1):}]. Find AB and BA, and show that ABneBA.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

Let A+2B={:[(3,2,-3),(1,0,4),(3,1,2)]:}and-A-B={:[(1,0,3),(-1,4,1),(3,2,1)]:} . Find A and B.

If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)] , find AB and BA and show that AB!=BA

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

Find the inverse of each of the matrices given below : Compute (AB)^(-1) when A=[(1,1,2),(0,2,-3),(3,-2,4)] and B^(-1)=[(1,2,0),(0,3,-1),(1,0,2)] . Find A^(-1).

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

Let A=[(2,4),(1,-3)] and B=[(1,-1,5),(0,2,6)] (a) Find AB. (b) Is BA defined ? Justify your answer.