Home
Class 12
MATHS
Find the values of 'x','y','z' if the ma...

Find the values of `'x','y','z'` if the matrix : `A=[(0,2y,z),(x,y,-z),(x,-y,z)]` satisfies the equation `A'A=I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the values of \(x\), \(y\), and \(z\) such that the matrix \[ A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] satisfies the equation \(A^T A = I\) (where \(I\) is the identity matrix), we will follow these steps: ### Step 1: Compute the Transpose of Matrix \(A\) The transpose of matrix \(A\), denoted as \(A^T\), is obtained by swapping the rows and columns: \[ A^T = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \] ### Step 2: Compute \(A^T A\) Now we will multiply \(A^T\) by \(A\): \[ A^T A = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] Calculating the entries of \(A^T A\): 1. **First Row:** - \( (0 \cdot 0 + x \cdot x + x \cdot x) = 2x^2 \) - \( (0 \cdot 2y + x \cdot y + x \cdot -y) = 0 \) - \( (0 \cdot z + x \cdot -z + x \cdot z) = 0 \) 2. **Second Row:** - \( (2y \cdot 0 + y \cdot x + -y \cdot x) = 0 \) - \( (2y \cdot 2y + y \cdot y + -y \cdot -y) = 6y^2 \) - \( (2y \cdot z + y \cdot -z + -y \cdot z) = 0 \) 3. **Third Row:** - \( (z \cdot 0 + -z \cdot x + z \cdot x) = 0 \) - \( (z \cdot 2y + -z \cdot y + z \cdot -y) = 0 \) - \( (z \cdot z + -z \cdot -z + z \cdot z) = 3z^2 \) Putting this together, we get: \[ A^T A = \begin{pmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{pmatrix} \] ### Step 3: Set \(A^T A\) Equal to Identity Matrix \(I\) We know that \(A^T A = I\), where \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, we can set up the following equations: 1. \(2x^2 = 1\) 2. \(6y^2 = 1\) 3. \(3z^2 = 1\) ### Step 4: Solve for \(x\), \(y\), and \(z\) 1. From \(2x^2 = 1\): \[ x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}} \] 2. From \(6y^2 = 1\): \[ y^2 = \frac{1}{6} \implies y = \pm \frac{1}{\sqrt{6}} \] 3. From \(3z^2 = 1\): \[ z^2 = \frac{1}{3} \implies z = \pm \frac{1}{\sqrt{3}} \] ### Final Values Thus, the values of \(x\), \(y\), and \(z\) are: \[ x = \pm \frac{1}{\sqrt{2}}, \quad y = \pm \frac{1}{\sqrt{6}}, \quad z = \pm \frac{1}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find the values of x,y,z if the matrix A=[(0,3y,z),(x,y,-z),(x,-y,z)] satisfy the equation A'A=I .

Find the values of x,y,z if the matrix A=[[0,2y,zx,y,-zx,-y,z]] satisfy the equation A'A=I

Find the values of x,y,z if the matrix A=[[0,2y,zx,y,-zx,-y,z]] satisfy the equation A^(T)A=I_(3)

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x , y , zdot

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

Find the values of x,y,z and a which satisfy the matrix equation [[0,-73,2a]]

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Find the values of x,y and z from the following matrix equations : [(x+y,2),(5+z,xy)]=[(6,2),(5,8)]