Home
Class 12
MATHS
Given X=[(2,0,2),(1,0,-1)]Y=[(3,-1,0),(-...

Given `X=[(2,0,2),(1,0,-1)]Y=[(3,-1,0),(-2,0,-1)]`, find Z such `X+Y+Z=O`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( Z \) such that: \[ X + Y + Z = O \] where \( O \) is the null matrix (all elements are zero). We will follow these steps: ### Step 1: Define the matrices \( X \) and \( Y \) Given: \[ X = \begin{pmatrix} 2 & 0 & 2 \\ 1 & 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 3 & -1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \] ### Step 2: Calculate \( X + Y \) To find \( Z \), we first need to compute \( X + Y \): \[ X + Y = \begin{pmatrix} 2 & 0 & 2 \\ 1 & 0 & -1 \end{pmatrix} + \begin{pmatrix} 3 & -1 & 0 \\ -2 & 0 & -1 \end{pmatrix} \] We add the corresponding elements: \[ X + Y = \begin{pmatrix} 2 + 3 & 0 - 1 & 2 + 0 \\ 1 - 2 & 0 + 0 & -1 - 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 & 2 \\ -1 & 0 & -2 \end{pmatrix} \] ### Step 3: Set up the equation for \( Z \) Now, we can substitute \( X + Y \) into the equation: \[ Z = O - (X + Y) \] Since \( O \) is the null matrix: \[ O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Thus, we have: \[ Z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 5 & -1 & 2 \\ -1 & 0 & -2 \end{pmatrix} \] ### Step 4: Calculate \( Z \) Now we perform the subtraction: \[ Z = \begin{pmatrix} 0 - 5 & 0 - (-1) & 0 - 2 \\ 0 - (-1) & 0 - 0 & 0 - (-2) \end{pmatrix} = \begin{pmatrix} -5 & 1 & -2 \\ 1 & 0 & 2 \end{pmatrix} \] ### Final Answer Thus, the matrix \( Z \) is: \[ Z = \begin{pmatrix} -5 & 1 & -2 \\ 1 & 0 & 2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Short Answer Type Questions|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (a) Short Answer Type Questions|21 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If [(x-y,2x-y),(2x+z,3z+w)]=[(-1,0),(5,13)]

If [(1,0,0 ), (0,-1,0), (0,0, -1)][(x),(y),( z)]=[(1),(0),(1)] , find x ,\ y\ a n d\ z .

If [{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,1,4),(,0,0,5):}], "find x,y,z,w"

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x),(y),(z)]=[(1),(1),(2)] is (x,y,z)

If A=[{:(1,1,1),(1,0,2),(3,1,1):}] , find A^(-1) . Hence, solve the system of equations : x+y+z=6 , x+2z=7 , 3x+y+z=12

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

If [(1,4),(2,0)] = [(x,y^(2)),(z,0)] y lt 0 then x-y+z is equal to

If |[x,2,0],[2,x,0],[0,0,1]|+|[y,1],[0,0]|+|[0,1],[0,z]|=0 ,then find x

Find x, y, z when [(x-y,2x+z),(2x-y,3z+w):}]=[{:(-1,5),(0,13):}].