Home
Class 12
MATHS
Verify associative law of matrix additio...

Verify associative law of matrix additions for the matrices :
`A=[(1,0),(2,-1)],B=[(3,7),(4,8)]` and `C=[(-1,0),(0,0)]`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Short Answer Type Questions|11 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (c ) Long Answer Type Questions|3 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (a) Short Answer Type Questions|21 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the matrices given below : Obtain the inverse of the matrics [(1,p,0),(0,1,p),(0,0,1)] and [(1,0,0),(q,1,0),(0,q,1)] . And, hence find the inverse of the matrix [((1+pq),p,0),(q,(1+pq),p),(0,q,1)] . Let the first two matrices be A and B. Then, the third matrix is AB. Now, (AB)^(-1)=(B^(-1)A^(-1))

A=[(-1,3,0),(-7,2,8)],B=[(-5,0),(0,3),(1,-8)] . then AB

Find the inverse of each of the matrices given below : [(0,0,-1), (2,-1,4),(-2,-4,-7)]

Find the additive inverse of the matrix A=[{:(2,-5," "0),(4," "3,-1):}].

If the matrices A = [{:(2,1,3),(4,1,0):}] and B = [{:(1,-1),(0,2),(5,0):}] , then (AB)^T will be

For the following matrices verify the associativity of matrix multiplication i.e. (A B)C=A(B C)dot A=[1 2 0-1 0 1] , B=[1 0-1 2 0 3] and C=[1-1] (ii) A=[4 2 3 1 1 2 3 0 1] , B=[1-1 1 0 1 2 2-1 1] and C=[1 2-1 3 0 1 0 0 1] .

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

Find matrices A and B, if 2A - B =[{:(6,-6,0),(-4,2,1):}] and A-2B =[{:(3,2,8),(-2,1,7):}]