Home
Class 12
MATHS
Let A=[(1,2),(2,1)],B=[(2,0),(1,3)] and ...

Let `A=[(1,2),(2,1)],B=[(2,0),(1,3)]` and `C=[(1,1),(2,3)]`.
Calculate AC, BC and (A+B) C.
Also, verify that (A+B)C=AC+BC.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will calculate the matrices \( AC \), \( BC \), and \( (A + B)C \) step by step, and then verify that \( (A + B)C = AC + BC \). Given matrices: \[ A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \] ### Step 1: Calculate \( AC \) To find \( AC \), we multiply matrix \( A \) by matrix \( C \): \[ AC = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \cdot 1 + 2 \cdot 2 = 1 + 4 = 5 \) - First row, second column: \( 1 \cdot 1 + 2 \cdot 3 = 1 + 6 = 7 \) - Second row, first column: \( 2 \cdot 1 + 1 \cdot 2 = 2 + 2 = 4 \) - Second row, second column: \( 2 \cdot 1 + 1 \cdot 3 = 2 + 3 = 5 \) Thus, \[ AC = \begin{pmatrix} 5 & 7 \\ 4 & 5 \end{pmatrix} \] ### Step 2: Calculate \( BC \) Next, we calculate \( BC \): \[ BC = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \] Calculating each element: - First row, first column: \( 2 \cdot 1 + 0 \cdot 2 = 2 + 0 = 2 \) - First row, second column: \( 2 \cdot 1 + 0 \cdot 3 = 2 + 0 = 2 \) - Second row, first column: \( 1 \cdot 1 + 3 \cdot 2 = 1 + 6 = 7 \) - Second row, second column: \( 1 \cdot 1 + 3 \cdot 3 = 1 + 9 = 10 \) Thus, \[ BC = \begin{pmatrix} 2 & 2 \\ 7 & 10 \end{pmatrix} \] ### Step 3: Calculate \( A + B \) Now, we calculate \( A + B \): \[ A + B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 + 2 = 3 \) - First row, second column: \( 2 + 0 = 2 \) - Second row, first column: \( 2 + 1 = 3 \) - Second row, second column: \( 1 + 3 = 4 \) Thus, \[ A + B = \begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix} \] ### Step 4: Calculate \( (A + B)C \) Now we calculate \( (A + B)C \): \[ (A + B)C = \begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \] Calculating each element: - First row, first column: \( 3 \cdot 1 + 2 \cdot 2 = 3 + 4 = 7 \) - First row, second column: \( 3 \cdot 1 + 2 \cdot 3 = 3 + 6 = 9 \) - Second row, first column: \( 3 \cdot 1 + 4 \cdot 2 = 3 + 8 = 11 \) - Second row, second column: \( 3 \cdot 1 + 4 \cdot 3 = 3 + 12 = 15 \) Thus, \[ (A + B)C = \begin{pmatrix} 7 & 9 \\ 11 & 15 \end{pmatrix} \] ### Step 5: Verify \( (A + B)C = AC + BC \) Now we need to verify if \( (A + B)C = AC + BC \): \[ AC + BC = \begin{pmatrix} 5 & 7 \\ 4 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 2 \\ 7 & 10 \end{pmatrix} \] Calculating each element: - First row, first column: \( 5 + 2 = 7 \) - First row, second column: \( 7 + 2 = 9 \) - Second row, first column: \( 4 + 7 = 11 \) - Second row, second column: \( 5 + 10 = 15 \) Thus, \[ AC + BC = \begin{pmatrix} 7 & 9 \\ 11 & 15 \end{pmatrix} \] Since \( (A + B)C = AC + BC \), we have verified the equality. ### Final Result \[ AC = \begin{pmatrix} 5 & 7 \\ 4 & 5 \end{pmatrix}, \quad BC = \begin{pmatrix} 2 & 2 \\ 7 & 10 \end{pmatrix}, \quad (A + B)C = \begin{pmatrix} 7 & 9 \\ 11 & 15 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0,6,7),(-6,0,8),(7,-8,0)],B=[(0,1,1),(1,0,2),(1,2,0)],C=[(2),(-2),(3)] . Calculate AC, BC and (A+B)C. Also show that (A+B)C=AC+BC.

If A=[0 6 7-6 0 8 7-8 0] , B=[0 1 1 1 0 2 1 2 0] , C=[2-2 3] Calculate AC, BC and (A" "+" "B)C . Also, verify that (A" "+" "B)C" "=" "A C" "+" "B C

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

If A = [{:(1,2),(-2,3):}], B= [{:(2,1),(2,3):}] and C = [{:(-3,1),(2,0):}] ,verify that (AB)C = A(BC) and A(B+C)=AB+AC.

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[{:(3,2),(1,0):}],B=[{:(1,-2,5),(0,7,3):}]" and "C=[{:(8,1,-6),(2,-5,0):}] , verify that A(B+C)=(AB+AC).

If A=[{:(" "1,-1," "2),(" "3," "2," "0),(-2," "0," "1):}],B=[{:(3,1),(0,2),(-2,5):}]" and "C=[{:(2,1,-3),(3,0,-1):} then verify that (AB)C=A(BC).

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

Verify that A(B+C)=(AB+AC), when (i) A=[{:(1,2),(3,4):}],B=[{:(2," "0),(1,-3):}]" and "C=[{:(1,-1),(0," "1):}]. (ii) A=[{:(2,3),(-1,4),(0,1):}],B=[{:(5,-3),(2," "1):}]" and "C=[{:(-1,2),(" "3,4):}].

MODERN PUBLICATION-MATRICES-Exercise 3 (d) Long Answer Type Questions I
  1. If A=[(2,1),(1,0)],B=[(1,-1),(2,3)], verify that : (A+B)^(2)!=A^(2)+...

    Text Solution

    |

  2. If A=[(1,1,-1),(2,0,3),(3,-1,2)], B=[(1,3),(0,2),(-1,4)] and C=[(1,2,3...

    Text Solution

    |

  3. Let A=[(1,2),(2,1)],B=[(2,0),(1,3)] and C=[(1,1),(2,3)]. Calculate A...

    Text Solution

    |

  4. Let A=[(0,6,7),(-6,0,8),(7,-8,0)],B=[(0,1,1),(1,0,2),(1,2,0)],C=[(2),(...

    Text Solution

    |

  5. Find the matrix X so that X[1 2 3 4 5 6]=[-7-8-9""""""2""""""4""""6]

    Text Solution

    |

  6. If A=[(1,-2),(-3,4)], then find A^(2)+5A.

    Text Solution

    |

  7. If A=[3 1-1 2] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  8. Let A ={:[(2,0,1),(2,1,3),(1,-1,0)] and f(x) = x^(2) -5x + 6 , find f(...

    Text Solution

    |

  9. यदि A= [[2,0,1],[2,1,3],[1,-1,0]], तब A^(2) - 3A + 2I का मान ज्ञात क...

    Text Solution

    |

  10. if A=[{:(3,1),(-1,2):}],show that A^(2)-5A+7I=0.

    Text Solution

    |

  11. If M=[(7,5),(2,3)], then verify the equation : M^(2)-10M+11I(2)=O

    Text Solution

    |

  12. If A+l={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40l=0

    Text Solution

    |

  13. If A=[1 0 2 0 2 1 2 0 3] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  14. If A=[{:(-1,2),(3,1):}], find f(A), where f(x)=x^(2)-2x+3.

    Text Solution

    |

  15. If A=[(3,1),(-1,2)], then find f (A), where f(x)=x^(2)-5x+7.

    Text Solution

    |

  16. If A=[1 0-1 7] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  17. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  18. If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)], then find 'k' so that k^(2)=5...

    Text Solution

    |

  19. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  20. Let A=[0 1 0 0]show that (a I+b A)^n=a^n I+n a^(n-1)b A, where I is t...

    Text Solution

    |