Home
Class 12
MATHS
Let A=[(0,6,7),(-6,0,8),(7,-8,0)],B=[(0,...

Let `A=[(0,6,7),(-6,0,8),(7,-8,0)],B=[(0,1,1),(1,0,2),(1,2,0)],C=[(2),(-2),(3)]`.
Calculate AC, BC and (A+B)C.
Also show that (A+B)C=AC+BC.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( AC \), \( BC \), and \( (A + B)C \), and then verify that \( (A + B)C = AC + BC \). ### Step 1: Calculate \( AC \) Given: \[ A = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \] To find \( AC \): \[ AC = A \cdot C = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \] Calculating each element: 1. First row: \( 0 \cdot 2 + 6 \cdot (-2) + 7 \cdot 3 = 0 - 12 + 21 = 9 \) 2. Second row: \( -6 \cdot 2 + 0 \cdot (-2) + 8 \cdot 3 = -12 + 0 + 24 = 12 \) 3. Third row: \( 7 \cdot 2 + (-8) \cdot (-2) + 0 \cdot 3 = 14 + 16 + 0 = 30 \) Thus, \[ AC = \begin{pmatrix} 9 \\ 12 \\ 30 \end{pmatrix} \] ### Step 2: Calculate \( BC \) Given: \[ B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \] To find \( BC \): \[ BC = B \cdot C = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \] Calculating each element: 1. First row: \( 0 \cdot 2 + 1 \cdot (-2) + 1 \cdot 3 = 0 - 2 + 3 = 1 \) 2. Second row: \( 1 \cdot 2 + 0 \cdot (-2) + 2 \cdot 3 = 2 + 0 + 6 = 8 \) 3. Third row: \( 1 \cdot 2 + 2 \cdot (-2) + 0 \cdot 3 = 2 - 4 + 0 = -2 \) Thus, \[ BC = \begin{pmatrix} 1 \\ 8 \\ -2 \end{pmatrix} \] ### Step 3: Calculate \( A + B \) To find \( A + B \): \[ A + B = \begin{pmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \] Calculating each element: 1. First row: \( 0 + 0, 6 + 1, 7 + 1 = 0, 7, 8 \) 2. Second row: \( -6 + 1, 0 + 0, 8 + 2 = -5, 0, 10 \) 3. Third row: \( 7 + 1, -8 + 2, 0 + 0 = 8, -6, 0 \) Thus, \[ A + B = \begin{pmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 8 & -6 & 0 \end{pmatrix} \] ### Step 4: Calculate \( (A + B)C \) Now, we compute \( (A + B)C \): \[ (A + B)C = \begin{pmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 8 & -6 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \] Calculating each element: 1. First row: \( 0 \cdot 2 + 7 \cdot (-2) + 8 \cdot 3 = 0 - 14 + 24 = 10 \) 2. Second row: \( -5 \cdot 2 + 0 \cdot (-2) + 10 \cdot 3 = -10 + 0 + 30 = 20 \) 3. Third row: \( 8 \cdot 2 + (-6) \cdot (-2) + 0 \cdot 3 = 16 + 12 + 0 = 28 \) Thus, \[ (A + B)C = \begin{pmatrix} 10 \\ 20 \\ 28 \end{pmatrix} \] ### Step 5: Verify \( (A + B)C = AC + BC \) Now we check if \( (A + B)C = AC + BC \): \[ AC + BC = \begin{pmatrix} 9 \\ 12 \\ 30 \end{pmatrix} + \begin{pmatrix} 1 \\ 8 \\ -2 \end{pmatrix} \] Calculating: 1. First row: \( 9 + 1 = 10 \) 2. Second row: \( 12 + 8 = 20 \) 3. Third row: \( 30 - 2 = 28 \) Thus, \[ AC + BC = \begin{pmatrix} 10 \\ 20 \\ 28 \end{pmatrix} \] Since \( (A + B)C = AC + BC \), we have verified the equation. ### Final Answers: - \( AC = \begin{pmatrix} 9 \\ 12 \\ 30 \end{pmatrix} \) - \( BC = \begin{pmatrix} 1 \\ 8 \\ -2 \end{pmatrix} \) - \( (A + B)C = \begin{pmatrix} 10 \\ 20 \\ 28 \end{pmatrix} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,2),(2,1)],B=[(2,0),(1,3)] and C=[(1,1),(2,3)] . Calculate AC, BC and (A+B) C. Also, verify that (A+B)C=AC+BC.

If A=[0 6 7-6 0 8 7-8 0] , B=[0 1 1 1 0 2 1 2 0] , C=[2-2 3] Calculate AC, BC and (A" "+" "B)C . Also, verify that (A" "+" "B)C" "=" "A C" "+" "B C

Let A=[{:(0,1,-2),(5,-1,-4):}],B=[{:(1,-3,-1),(0,-2," "5):}]" and "C=[{:(2,-5,1),(-4," "0,6):}]. Compute 5A-3B+4C.

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

If A={:[(3,2,7),(1,1,4),(-1,-1,0)]:},B={:[(1,0,3),(2,1,0),(0,-1,-3)]:}andC{:[(1,0,0),(0,1,0),(0,0,1)]:} , then find 2A+3B-7C.

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)=

If A=[{:(" "1,-1," "2),(" "3," "2," "0),(-2," "0," "1):}],B=[{:(3,1),(0,2),(-2,5):}]" and "C=[{:(2,1,-3),(3,0,-1):} then verify that (AB)C=A(BC).

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

MODERN PUBLICATION-MATRICES-Exercise 3 (d) Long Answer Type Questions I
  1. If A=[(1,1,-1),(2,0,3),(3,-1,2)], B=[(1,3),(0,2),(-1,4)] and C=[(1,2,3...

    Text Solution

    |

  2. Let A=[(1,2),(2,1)],B=[(2,0),(1,3)] and C=[(1,1),(2,3)]. Calculate A...

    Text Solution

    |

  3. Let A=[(0,6,7),(-6,0,8),(7,-8,0)],B=[(0,1,1),(1,0,2),(1,2,0)],C=[(2),(...

    Text Solution

    |

  4. Find the matrix X so that X[1 2 3 4 5 6]=[-7-8-9""""""2""""""4""""6]

    Text Solution

    |

  5. If A=[(1,-2),(-3,4)], then find A^(2)+5A.

    Text Solution

    |

  6. If A=[3 1-1 2] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  7. Let A ={:[(2,0,1),(2,1,3),(1,-1,0)] and f(x) = x^(2) -5x + 6 , find f(...

    Text Solution

    |

  8. यदि A= [[2,0,1],[2,1,3],[1,-1,0]], तब A^(2) - 3A + 2I का मान ज्ञात क...

    Text Solution

    |

  9. if A=[{:(3,1),(-1,2):}],show that A^(2)-5A+7I=0.

    Text Solution

    |

  10. If M=[(7,5),(2,3)], then verify the equation : M^(2)-10M+11I(2)=O

    Text Solution

    |

  11. If A+l={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40l=0

    Text Solution

    |

  12. If A=[1 0 2 0 2 1 2 0 3] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  13. If A=[{:(-1,2),(3,1):}], find f(A), where f(x)=x^(2)-2x+3.

    Text Solution

    |

  14. If A=[(3,1),(-1,2)], then find f (A), where f(x)=x^(2)-5x+7.

    Text Solution

    |

  15. If A=[1 0-1 7] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  16. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  17. If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)], then find 'k' so that k^(2)=5...

    Text Solution

    |

  18. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  19. Let A=[0 1 0 0]show that (a I+b A)^n=a^n I+n a^(n-1)b A, where I is t...

    Text Solution

    |

  20. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |