Home
Class 12
MATHS
If A=[(3,1),(-1,2)], then find f (A), ...

If `A=[(3,1),(-1,2)]`, then find f (A),
where `f(x)=x^(2)-5x+7`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(A) \) where \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \) and \( f(x) = x^2 - 5x + 7 \). ### Step 1: Calculate \( A^2 \) To find \( f(A) \), we first need to compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 3 \cdot 3 + 1 \cdot (-1) = 9 - 1 = 8 \] - First row, second column: \[ 3 \cdot 1 + 1 \cdot 2 = 3 + 2 = 5 \] - Second row, first column: \[ -1 \cdot 3 + 2 \cdot (-1) = -3 - 2 = -5 \] - Second row, second column: \[ -1 \cdot 1 + 2 \cdot 2 = -1 + 4 = 3 \] Thus, we have: \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Step 2: Compute \( 5A \) Next, we compute \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} \] ### Step 3: Compute \( f(A) \) Now we can compute \( f(A) \): \[ f(A) = A^2 - 5A + 7I \] Where \( I \) is the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), so \( 7I = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \). Now substituting the values we calculated: \[ f(A) = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] ### Step 4: Perform the matrix subtraction and addition First, calculate \( A^2 - 5A \): \[ \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} = \begin{pmatrix} 8 - 15 & 5 - 5 \\ -5 - (-5) & 3 - 10 \end{pmatrix} = \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} \] Now add \( 7I \): \[ \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -7 + 7 & 0 + 0 \\ 0 + 0 & -7 + 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Result Thus, we find that: \[ f(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(" "3," "4),(-4,-3):}] , find f(A), where f(x)=x^(2)-5x+7.

If A=[{:(-1,2),(3,1):}] , find f(A), where f(x)=x^(2)-2x+3.

If A=[[3,4],[-4,-3]] , find f(A), where f(x)=x^2-5x+7

Find f^(')(2)" and "f^(')(5) , where f(x)=x^(2)-7x+6 .

If f(x)=x^2-5x+ 7 and A=[(3,1),(-1,2)]. Find f(A)

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=

If f(x)=(7)/(4)x^(2), then find f'((1)/(7))

Find 'a' if f^(')(a)=0 , where f(x)=x^(3)-3x^(2)+3x-1

If 2f(x)-3f((1)/(x))=6x+(1)/(x) then find f(x) and f(2)

MODERN PUBLICATION-MATRICES-Exercise 3 (d) Long Answer Type Questions I
  1. If A=[3 1-1 2] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  2. Let A ={:[(2,0,1),(2,1,3),(1,-1,0)] and f(x) = x^(2) -5x + 6 , find f(...

    Text Solution

    |

  3. यदि A= [[2,0,1],[2,1,3],[1,-1,0]], तब A^(2) - 3A + 2I का मान ज्ञात क...

    Text Solution

    |

  4. if A=[{:(3,1),(-1,2):}],show that A^(2)-5A+7I=0.

    Text Solution

    |

  5. If M=[(7,5),(2,3)], then verify the equation : M^(2)-10M+11I(2)=O

    Text Solution

    |

  6. If A+l={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40l=0

    Text Solution

    |

  7. If A=[1 0 2 0 2 1 2 0 3] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  8. If A=[{:(-1,2),(3,1):}], find f(A), where f(x)=x^(2)-2x+3.

    Text Solution

    |

  9. If A=[(3,1),(-1,2)], then find f (A), where f(x)=x^(2)-5x+7.

    Text Solution

    |

  10. If A=[1 0-1 7] , find k such that A^2-8A+k I=O .

    Text Solution

    |

  11. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  12. If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)], then find 'k' so that k^(2)=5...

    Text Solution

    |

  13. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  14. Let A=[0 1 0 0]show that (a I+b A)^n=a^n I+n a^(n-1)b A, where I is t...

    Text Solution

    |

  15. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  16. Let A=[(-1,-4),(1,3)], prove by Mathematical Induction that A^(n)=[(1-...

    Text Solution

    |

  17. If A=[[costheta,-sintheta],[sintheta,costheta]] then show that A^n = [...

    Text Solution

    |

  18. If A=[costhetaisinthetaisinthetacostheta], then prove by principal of ...

    Text Solution

    |

  19. A trust fund has Rs 30,000 that must be invested in two different t...

    Text Solution

    |

  20. There are 2 families A and B. There are 4 men, 6 women and 2 children ...

    Text Solution

    |